Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Struct Dyn ; 11(2): 024308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38586277

RESUMO

We present a new setup for resonant inelastic hard x-ray scattering at the Bernina beamline of SwissFEL with energy, momentum, and temporal resolution. The compact R = 0.5 m Johann-type spectrometer can be equipped with up to three crystal analyzers and allows efficient collection of RIXS spectra. Optical pumping for time-resolved studies can be realized with a broad span of optical wavelengths. We demonstrate the performance of the setup at an overall ∼180 meV resolution in a study of ground-state and photoexcited (at 400 nm) honeycomb 5d iridate α-Li2IrO3. Steady-state RIXS spectra at the iridium L3-edge (11.214 keV) have been collected and are in very good agreement with data collected at synchrotrons. The time-resolved RIXS transients exhibit changes in the energy loss region <2 eV, whose features mostly result from the hopping nature of 5d electrons in the honeycomb lattice. These changes are ascribed to modulations of the Ir-to-Ir inter-site transition scattering efficiency, which we associate to a transient screening of the on-site Coulomb interaction.

2.
J Synchrotron Radiat ; 31(Pt 3): 605-612, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38592969

RESUMO

Experimental characterization of the structural, electronic and dynamic properties of dilute systems in aqueous solvents, such as nanoparticles, molecules and proteins, are nowadays an open challenge. X-ray absorption spectroscopy (XAS) is probably one of the most established approaches to this aim as it is element-specific. However, typical dilute systems of interest are often composed of light elements that require extreme-ultraviolet to soft X-ray photons. In this spectral regime, water and other solvents are rather opaque, thus demanding radical reduction of the solvent volume and removal of the liquid to minimize background absorption. Here, we present an experimental endstation designed to operate a liquid flat jet of sub-micrometre thickness in a vacuum environment compatible with extreme ultraviolet/soft XAS measurements in transmission geometry. The apparatus developed can be easily connected to synchrotron and free-electron-laser user-facility beamlines dedicated to XAS experiments. The conditions for stable generation and control of the liquid flat jet are analyzed and discussed. Preliminary soft XAS measurements on some test solutions are shown.

3.
Nat Commun ; 15(1): 2544, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514610

RESUMO

Charge-transfer-to-solvent states in aqueous halides are ideal systems for studying the electron-transfer dynamics to the solvent involving a complex interplay between electronic excitation and solvent polarization. Despite extensive experimental investigations, a full picture of the charge-transfer-to-solvent dynamics has remained elusive. Here, we visualise the intricate interplay between the dynamics of the electron and the solvent polarization occurring in this process. Through the combined use of ab initio molecular dynamics and machine learning methods, we investigate the structure, dynamics and free energy as the excited electron evolves through the charge-transfer-to-solvent process, which we characterize as a sequence of states denoted charge-transfer-to-solvent, contact-pair, solvent-separated, and hydrated electron states, depending on the distance between the iodine and the excited electron. Our assignment of the charge-transfer-to-solvent states is supported by the good agreement between calculated and measured vertical binding energies. Our results reveal the charge transfer process in terms of the underlying atomic processes and mechanisms.

4.
Phys Chem Chem Phys ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525924

RESUMO

High-resolution carbon K-edge X-ray photoelectron, X-ray absorption, non-resonant and resonant Auger spectra are presented of gas phase trans-1,3-butadiene alongside a detailed theoretical analysis utilising nuclear ensemble approaches and vibronic models to simulate the spectroscopic observables. The resonant Auger spectra recorded across the first pre-edge band reveal a complex evolution of different electronic states which remain relatively well-localised on the edge or central carbon sites. The results demonstrate the sensitivity of the resonant Auger observables to the weighted contributions from multiple electronic states. The gradually evolving spectral features can be accurately and feasibly simulated within nuclear ensemble methods and interpreted with the population analysis.

5.
J Am Chem Soc ; 146(8): 5393-5401, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38359303

RESUMO

Disentangling electronic and thermal effects in photoexcited perovskite materials is crucial for photovoltaic and optoelectronic applications but remains a challenge due to their intertwined nature in both the time and energy domains. In this study, we employed temperature-dependent variable-angle spectroscopic ellipsometry, density functional theory calculations, and broadband transient absorption spectroscopy spanning the visible to mid-to-deep-ultraviolet (UV) ranges on MAPbBr3 thin films. The use of deep-UV detection opens a new spectral window that enables the exploration of high-energy excitations at various symmetry points within the Brillouin zone, facilitating an understanding of the ultrafast responses of the UV bands and the underlying mechanisms governing them. Our investigation reveals that the photoinduced spectral features remarkably resemble those generated by pure lattice heating, and we disentangle the relative thermal and electronic contributions and their evolutions at different delay times using combinations of decay-associated spectra and temperature-induced differential absorption. The results demonstrate that the photoinduced transients possess a significant thermal origin and cannot be attributed solely to electronic effects. Following photoexcitation, as carriers (electrons and holes) transfer their energy to the lattice, the thermal contribution increases from ∼15% at 1 ps to ∼55% at 500 ps and subsequently decreases to ∼35-50% at 1 ns. These findings elucidate the intricate energy exchange between charge carriers and the lattice in photoexcited perovskite materials and provide insights into the limited utilization efficiency of photogenerated charge carriers.

6.
Phys Chem Chem Phys ; 26(7): 6265-6276, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305747

RESUMO

Controlling the ultrafast photodynamics of metal-free organic molecules has great potential for technological applications. In this work, we use solvent polarity and viscosity as "external knobs" to govern the photodynamics of an electron-donating derivative of 2,2':6',2''-terpyridine (terpy), namely 4'-(4-(di(4-tert-butylphenyl)amine)phenyl)-2,2':6',2''-terpyridine (tBuTPAterpy). We combine femtosecond fluorescence upconversion (FlUC), transient absorption (TA) and quantum mechanical calculations to provide a comprehensive description of the tBuTPAterpy's photodynamics. Our results demonstrate that, by changing the solvent, the time scale of light-induced conformational changes of the system can be tuned over two orders of magnitude, controlling the tBuTPAterpy fluorescence spectral region and yield. As a result, depending on the local environment, tBuTPAterpy can act either as an "early bird" or a "night owl", with a tunability that makes it a promising candidate for metal-free sensors.

7.
Struct Dyn ; 10(6): 064501, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37941994

RESUMO

The evolution of charge carriers in photoexcited room temperature ZnO nanoparticles in solution is investigated using ultrafast ultraviolet photoluminescence spectroscopy, ultrafast Zn K-edge absorption spectroscopy, and ab initio molecular dynamics (MD) simulations. The photoluminescence is excited at 4.66 eV, well above the band edge, and shows that electron cooling in the conduction band and exciton formation occur in <500 fs, in excellent agreement with theoretical predictions. The x-ray absorption measurements, obtained upon excitation close to the band edge at 3.49 eV, are sensitive to the migration and trapping of holes. They reveal that the 2 ps transient largely reproduces the previously reported transient obtained at 100 ps time delay in synchrotron studies. In addition, the x-ray absorption signal is found to rise in ∼1.4 ps, which we attribute to the diffusion of holes through the lattice prior to their trapping at singly charged oxygen vacancies. Indeed, the MD simulations show that impulsive trapping of holes induces an ultrafast expansion of the cage of Zn atoms in <200 fs, followed by an oscillatory response at a frequency of ∼100 cm-1, which corresponds to a phonon mode of the system involving the Zn sub-lattice.

8.
J Phys Chem Lett ; 14(9): 2425-2432, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36862109

RESUMO

We report femtosecond Fe K-edge absorption (XAS) and nonresonant X-ray emission (XES) spectra of ferric cytochrome C (Cyt c) upon excitation of the haem (>300 nm) or mixed excitation of the haem and tryptophan (<300 nm). The XAS and XES transients obtained in both excitation energy ranges show no evidence for electron transfer processes between photoexcited tryptophan (Trp) and the haem, but rather an ultrafast energy transfer, in agreement with previous ultrafast optical fluorescence and transient absorption studies. The reported (J. Phys. Chem. B 2011, 115 (46), 13723-13730) decay times of Trp fluorescence in ferrous (∼350 fs) and ferric (∼700 fs) Cyt c are among the shortest ever reported for Trp in a protein. The observed time scales cannot be rationalized in terms of Förster or Dexter energy transfer mechanisms and call for a more thorough theoretical investigation.


Assuntos
Citocromos c , Heme , Heme/metabolismo , Triptofano , Transporte de Elétrons , Transferência de Energia , Ferro
9.
Phys Chem Chem Phys ; 25(9): 6733-6745, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799466

RESUMO

Carbon K-edge resonant Auger spectra of gas-phase allene following excitation of the pre-edge 1s → π* transitions are presented and analysed with the support of EOM-CCSD/cc-pVTZ calculations. X-Ray absorption (XAS), X-ray photoelectron (XPS), valence band and non-resonant Auger spectra are also reanalysed with a series of computational approaches. The results presented demonstrate the importance of including nuclear ensemble effects for simulating X-ray observables and as an effective strategy for capturing Jahn-Teller effects in spectra.

10.
Proc Natl Acad Sci U S A ; 119(49): e2216527119, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442098
11.
Chem Sci ; 13(18): 5230-5242, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655577

RESUMO

The photochemistry of DNA systems is characterized by the ultraviolet (UV) absorption of π-stacked nucleobases, resulting in exciton states delocalized over several bases. As their relaxation sensitively depends on local stacking conformations, disentangling the ensuing electronic and structural dynamics has remained an experimental challenge, despite their fundamental role in protecting the genome from potentially harmful UV radiation. Here we use transient absorption and transient absorption anisotropy spectroscopy with broadband femtosecond deep-UV pulses (250-360 nm) to resolve the exciton dynamics of UV-excited adenosine single strands under physiological conditions. Due to the exceptional deep-UV bandwidth and polarization sensitivity of our experimental approach, we simultaneously resolve the population dynamics, charge-transfer (CT) character and conformational changes encoded in the UV transition dipoles of the π-stacked nucleotides. Whilst UV excitation forms fully charge-separated CT excitons in less than 0.3 ps, we find that most decay back to the ground state via a back-electron transfer. Based on the anisotropy measurements, we propose that this mechanism is accompanied by a structural relaxation of the photoexcited base-stack, involving an inter-base rotation of the nucleotides. Our results finally complete the exciton relaxation mechanism for adenosine single strands and offer a direct view into the coupling of electronic and structural dynamics in aggregated photochemical systems.

12.
Nat Chem ; 14(7): 739-745, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35618767

RESUMO

Iron-based spin-crossover complexes hold tremendous promise as multifunctional switches in molecular devices. However, real-world technological applications require the excited high-spin state to be kinetically stable-a feature that has been achieved only at cryogenic temperatures. Here we demonstrate high-spin-state trapping by controlling the chiral configuration of the prototypical iron(II)tris(4,4'-dimethyl-2,2'-bipyridine) in solution, associated for stereocontrol with the enantiopure Δ- or Λ-enantiomer of tris(3,4,5,6-tetrachlorobenzene-1,2-diolato-κ2O1,O2)phosphorus(V) (P(O2C6Cl4)3- or TRISPHAT) anions. We characterize the high-spin-state relaxation using broadband ultrafast circular dichroism spectroscopy in the deep ultraviolet in combination with transient absorption and anisotropy measurements. We find that the high-spin-state decay is accompanied by ultrafast changes of its optical activity, reflecting the coupling to a symmetry-breaking torsional twisting mode, contrary to the commonly assumed picture. The diastereoselective ion pairing suppresses the vibrational population of the identified reaction coordinate, thereby achieving a fourfold increase of the high-spin-state lifetime. More generally, our results motivate the synthetic control of the torsional modes of iron(II) complexes as a complementary route to manipulate their spin-crossover dynamics.

13.
J Phys Chem Lett ; 13(15): 3382-3391, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35404613

RESUMO

A comprehensive microscopic description of thermally induced distortions in lead halide perovskites is crucial for their realistic applications, yet still unclear. Here, we quantify the effects of thermal activation in CsPbBr3 nanocrystals across length scales with atomic-level precision, and we provide a framework for the description of phase transitions therein, beyond the simplistic picture of unit-cell symmetry increase upon heating. The temperature increase significantly enhances the short-range structural distortions of the lead halide framework as a consequence of the phonon anharmonicity, which causes the excess free energy surface to change as a function of temperature. As a result, phase transitions can be rationalized via the soft-mode model, which also describes displacive thermal phase transitions in oxide perovskites. Our findings allow to reconcile temperature-dependent modifications of physical properties, such as changes in the optical band gap, that are incompatible with the perovskite time- and space-average structures.

14.
J Phys Chem C Nanomater Interfaces ; 126(7): 3591-3599, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35242272

RESUMO

We present temperature-dependent (from room temperature to 80 °C) absorption spectra of Au/SiO2 core-shell nanoparticles (NPs) (core diameter: ∼25 nm) in water in the range from 1.5 to 4.5 eV, which spans the localized surface plasmon resonance (LSPR) and the interband transitions. A decrease in absorption with temperature over the entire spectral range is observed, which is more prominent at the LSPR. These changes are well reproduced by theoretical calculations of the absorption spectra, based on the experimentally measured temperature-dependent real (ε1) and imaginary (ε2) parts of the dielectric constant of Au NPs and of the surrounding medium. In addition, we model the photoinduced response of the NPs over the entire spectral range. The experimental and theoretical results of the thermal heating and the simulations of the photoinduced heating are compared with the ultrafast photoinduced transient absorption (TA) spectra upon excitation of the LSPR. These show that while the latter is a reliable monitor of heating of the NP and its environment, the interband region mildly responds to heating but predominantly to the population evolution of charge carriers.

15.
Nano Lett ; 22(3): 1067-1074, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35044784

RESUMO

Describing the nanoscale charge carrier transport at surfaces and interfaces is fundamental for designing high-performance optoelectronic devices. To achieve this, we employ time- and angle-resolved photoelectron spectroscopy with ultraviolet pump and extreme ultraviolet probe pulses. The resulting high surface sensitivity reveals an ultrafast carrier population decay associated with surface-to-bulk transport, which was tracked with a sub-nanometer spatial resolution normal to the surface, and on a femtosecond time scale, in the case of the inorganic CsPbBr3 lead halide perovskite. The decay time exhibits a pronounced carrier density dependence, which is attributed via modeling to enhanced diffusive transport and concurrent recombination. The transport is found to approach an ordinary diffusive regime, limited by electron-hole scattering, at the highest excitation fluences. This approach constitutes an important milestone in our capability to probe hot-carrier transport at solid interfaces with sub-nanometer resolution in a theoretically and experimentally challenging, yet technologically relevant, high-carrier-density regime.

16.
Chimia (Aarau) ; 76(6): 538-545, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069723

RESUMO

In this article we revisit our recent picosecond and femtosecond X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) experiments, probing the ultrafast electronic and geometric evolution of photoexcited haem proteins, namely ferrous Nitrosyl Myoglobin (MbNO) and ferric Cytochrome c (Cyt c). We show through these two examples, combined with results from ultrafast optical spectroscopy, the universal behavior of the excited state dynamics of ferric and ferrous complexes. Regardless of the type of ligand, its dissociation or lack thereof, or the metal oxidation state, the photoexcited system relaxes through a cascade of excited spin states leading to formation of a high spin state, which in the case of the haem is a domed porphyrin.

17.
J Chem Phys ; 155(3): 034201, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34293898

RESUMO

Two-dimensional Fourier transform spectroscopy is a promising technique to study ultrafast molecular dynamics. Similar to transient absorption spectroscopy, a more complete picture of the dynamics requires broadband laser pulses to observe transient changes over a large enough bandwidth, exceeding the inhomogeneous width of electronic transitions, as well as the separation between the electronic or vibronic transitions of interest. Here, we present visible broadband 2D spectra of a series of dye molecules and report vibrational coherences with frequencies up to ∼1400 cm-1 that were obtained after improvements to our existing two-dimensional Fourier transform setup [Al Haddad et al., Opt. Lett. 40, 312-315 (2015)]. The experiment uses white light from a hollow core fiber, allowing us to acquire 2D spectra with a bandwidth of 200 nm, in a range between 500 and 800 nm, and with a temporal resolution of 10-15 fs. 2D spectra of nile blue, rhodamine 800, terylene diimide, and pinacyanol iodide show vibronic spectral features with at least one vibrational mode and reveal information about structural motion via coherent oscillations of the 2D signals during the population time. For the case of pinacyanol iodide, these observations are complemented by its Raman spectrum, as well as the calculated Raman activity at the ground- and excited-state geometry.

18.
J Am Chem Soc ; 143(24): 9048-9059, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34075753

RESUMO

The development of next-generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evident for CsPbBr3 perovskites that the Pb-Br framework flexibility plays a key role in their light-activated functionality, the corresponding local structural rearrangement has not yet been unambiguously identified. In this work, we demonstrate that the photoinduced lattice changes in the system are due to a specific polaronic distortion, associated with the activation of a longitudinal optical phonon mode at 18 meV by electron-phonon coupling, and we quantify the associated structural changes with atomic-level precision. Key to this achievement is the combination of time-resolved and temperature-dependent studies at Br K and Pb L3 X-ray absorption edges with refined ab initio simulations, which fully account for the screened core-hole final state effects on the X-ray absorption spectra. From the temporal kinetics, we show that carrier recombination reversibly unlocks the structural deformation at both Br and Pb sites. The comparison with the temperature-dependent XAS results rules out thermal effects as the primary source of distortion of the Pb-Br bonding motif during photoexcitation. Our work provides a comprehensive description of the CsPbBr3 perovskites' photophysics, offering novel insights on the light-induced response of the system and its exceptional optoelectronic properties.

20.
Faraday Discuss ; 228(0): 312-328, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33565544

RESUMO

We discuss our recently reported femtosecond (fs) X-ray emission spectroscopy results on the ligand dissociation and recombination in nitrosylmyoglobin (MbNO) in the context of previous studies on ferrous haem proteins. We also present a preliminary account of femtosecond X-ray absorption studies on MbNO, pointing to the presence of more than one species formed upon photolysis.


Assuntos
Heme , Ligantes , Fotólise , Análise Espectral , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...