Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700995

RESUMO

Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.


Assuntos
Drosophila melanogaster , Síndrome de Lesch-Nyhan , Animais , Drosophila melanogaster/fisiologia , Drosophila melanogaster/genética , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Purinas/metabolismo , Modelos Animais de Doenças , Comportamento Animal , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Hipoxantina Fosforribosiltransferase/deficiência , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Locomoção
3.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34620624

RESUMO

The V-ATPase is a highly conserved enzymatic complex that ensures appropriate levels of organelle acidification in virtually all eukaryotic cells. While the general mechanisms of this proton pump have been well studied, little is known about the specific regulations of neuronal V-ATPase. Here, we studied CG31030, a previously uncharacterized Drosophila protein predicted from its sequence homology to be part of the V-ATPase family. In contrast to its ortholog ATP6AP1/VhaAC45 which is ubiquitous, we observed that CG31030 expression is apparently restricted to all neurons, and using CRISPR/Cas9-mediated gene tagging, that it is mainly addressed to synaptic terminals. In addition, we observed that CG31030 is essential for fly survival and that this protein co-immunoprecipitates with identified V-ATPase subunits, and in particular ATP6AP2. Using a genetically-encoded pH probe (VMAT-pHluorin) and electrophysiological recordings at the larval neuromuscular junction, we show that CG31030 knock-down induces a major defect in synaptic vesicle acidification and a decrease in quantal size, which is the amplitude of the postsynaptic response to the release of a single synaptic vesicle. These defects were associated with severe locomotor impairments. Overall, our data indicate that CG31030, which we renamed VhaAC45-related protein (VhaAC45RP), is a specific regulator of neuronal V-ATPase in Drosophila that is required for proper synaptic vesicle acidification and neurotransmitter release.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Adenosina Trifosfatases , Animais , Proteínas de Drosophila/genética , Neurônios , Vesículas Sinápticas
4.
J Comp Neurol ; 528(1): 81-94, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31273786

RESUMO

Rhesus glycoproteins (Rh50) have been shown to be ammonia transporters in many species from bacteria to human. They are involved in various physiological processes including acid excretion and pH regulation. Rh50 proteins can also provide a structural link between the cytoskeleton and the plasma membranes that maintain cellular integrity. Although ammonia plays essential roles in the nervous system, in particular at glutamatergic synapses, a potential role for Rh50 proteins at synapses has not yet been investigated. To better understand the function of these proteins in vivo, we studied the unique Rh50 gene of Drosophila melanogaster, which encodes two isoforms, Rh50A and Rh50BC. We found that Drosophila Rh50A is expressed in larval muscles and enriched in the postsynaptic regions of the glutamatergic neuromuscular junctions. Rh50 inactivation by RNA interference selectively in muscle cells caused muscular atrophy in larval stages and pupal lethality. Interestingly, Rh50-deficiency in muscles specifically increased glutamate receptor subunit IIA (GluRIIA) level and the frequency of spontaneous excitatory postsynaptic potentials. Our work therefore highlights a new role for Rh50 proteins in the maintenance of Drosophila muscle architecture and synaptic physiology, which could be conserved in other species.


Assuntos
Compostos de Amônio/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas de Drosophila/metabolismo , Larva/metabolismo , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Compostos de Amônio/análise , Animais , Animais Geneticamente Modificados , Proteínas Sanguíneas/análise , Proteínas de Drosophila/análise , Drosophila melanogaster , Larva/crescimento & desenvolvimento , Glicoproteínas de Membrana/análise , Músculo Esquelético/química , Músculo Esquelético/crescimento & desenvolvimento , Junção Neuromuscular/química , Junção Neuromuscular/crescimento & desenvolvimento
5.
Autophagy ; 14(11): 1898-1910, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29989488

RESUMO

The autophagy-lysosome pathway plays a fundamental role in the clearance of aggregated proteins and protection against cellular stress and neurodegenerative conditions. Alterations in autophagy processes, including macroautophagy and chaperone-mediated autophagy (CMA), have been described in Parkinson disease (PD). CMA is a selective autophagic process that depends on LAMP2A (lysosomal-associated membrane protein 2A), a mammal and bird-specific membrane glycoprotein that translocates cytosolic proteins containing a KFERQ-like peptide motif across the lysosomal membrane. Drosophila reportedly lack CMA and use endosomal microautophagy (eMI) as an alternative selective autophagic process. Here we report that neuronal expression of human LAMP2A protected Drosophila against starvation and oxidative stress, and delayed locomotor decline in aging flies without extending their lifespan. LAMP2A also prevented the progressive locomotor and oxidative defects induced by neuronal expression of PD-associated human SNCA (synuclein alpha) with alanine-to-proline mutation at position 30 (SNCAA30P). Using KFERQ-tagged fluorescent biosensors, we observed that LAMP2A expression stimulated selective autophagy in the adult brain and not in the larval fat body, but did not increase this process under starvation conditions. Noteworthy, we found that neurally expressed LAMP2A markedly upregulated levels of Drosophila Atg5, a key macroautophagy initiation protein, and that it increased the density of Atg8a/LC3-positive puncta, which reflects the formation of autophagosomes. Furthermore, LAMP2A efficiently prevented accumulation of the autophagy defect marker Ref(2)P/p62 in the adult brain under acute oxidative stress. These results indicate that LAMP2A can potentiate autophagic flux in the Drosophila brain, leading to enhanced stress resistance and neuroprotection. ABBREVIATIONS: Act5C: actin 5C; a.E.: after eclosion; Atg5: autophagy-related 5; Atg8a/LC3: autophagy-related 8a; CMA: chaperone-mediated autophagy; DHE: dihydroethidium; elav: embryonic lethal abnormal vision; eMI: endosomal microautophagy; ESCRT: endosomal sorting complexes required for transport; GABARAP: GABA typeA receptor-associated protein; Hsc70-4: heat shock protein cognate 4; HSPA8/Hsc70: heat shock protein family A (Hsp70) member 8; LAMP2: lysosomal associated membrane protein 2; MDA: malondialdehyde; PA-mCherry: photoactivable mCherry; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PD: Parkinson disease; Ref(2)P/p62: refractory to sigma P; ROS: reactive oxygen species; RpL32/rp49: ribosomal protein L32; RT-PCR: reverse transcription polymerase chain reaction; SING: startle-induced negative geotaxis; SNCA/α-synuclein: synuclein alpha; SQSTM1/p62: sequestosome 1; TBS: Tris-buffered saline; UAS: upstream activating sequence.


Assuntos
Autofagia/genética , Drosophila , Proteína 2 de Membrana Associada ao Lisossomo/fisiologia , Neuroproteção/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/prevenção & controle , alfa-Sinucleína/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Drosophila/genética , Drosophila/metabolismo , Humanos , Locomoção/genética , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Estresse Oxidativo/genética , Doença de Parkinson/genética , Fenótipo , Transdução de Sinais/genética , alfa-Sinucleína/efeitos adversos
6.
Hum Mutat ; 34(10): 1404-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24272871

RESUMO

Diffuse bronchiectasis is a common problem in respiratory clinics. We hypothesized that mutations in the solute carrier 26A9 (SLC26A9) gene, encoding for a chloride (Cl(-)) transporter mainly expressed in lungs, may lead to defects in mucociliary clearance. We describe two missense variants in the SLC26A9 gene in heterozygote patients presenting with diffuse idiopathic bronchiectasis : p.Arg575Trp, identified in a patient also heterozygote for p.Phe508del in the CFTR gene; and p.Val486Ile. Expression of both mutants in Xenopus laevis oocytes abolished SLC26A9-mediated Cl(-) conductance without decreasing protein membrane expression. Coexpression of CFTR with SLC26A9-p.Val486Ile resulted in a significant increase in the Cl(-) current induced by PKA stimulation, similar to that obtained in oocytes expressing CFTR and SLC26A9-WT. In contrast, coexpression of CFTR with SLC26A9-p.Arg575Trp inhibited SLC26A9-enhanced CFTR activation upon PKA. Further structure-function analyses led us to propose a site encompassing Arg575 in the SLC26A9-STAS domain for CFTR-SLC26A9 interaction. We hypothesize that SLC26A9-p.Arg575Trp prevented SLC26A9-mediated functional activation of CFTR by altering SLC26A9-CFTR interaction. Although we cannot confirm that these mutations by themselves are deleterious, we propose that they trigger the pathogenic role of a single CFTR mutation and provide insight into a novel mechanism of Cl(-) transport alteration across the respiratory mucosa, based on functional inhibition of CFTR.


Assuntos
Antiporters/genética , Pneumopatias/diagnóstico , Pneumopatias/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antiporters/química , Antiporters/metabolismo , Estudos de Casos e Controles , Criança , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Éxons , Feminino , Expressão Gênica , Humanos , Pneumopatias/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Oócitos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transportadores de Sulfato , Tomografia Computadorizada por Raios X , Xenopus laevis , Adulto Jovem
7.
PLoS One ; 7(4): e34879, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514683

RESUMO

BACKGROUND: A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF) when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a) functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes. METHODOLOGY/FINDINGS: NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi) was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC) had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression. CONCLUSION/PERSPECTIVES: We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Oócitos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Feminino , Ligação Proteica
8.
Proc Natl Acad Sci U S A ; 104(49): 19303-8, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18032606

RESUMO

The Rhesus (Rh) proteins are a family of integral membrane proteins found throughout the animal kingdom that also occur in a number of lower eukaryotes. The significance of Rh proteins derives from their presence in the human red blood cell membrane, where they constitute the second most important group of antigens used in transfusion medicine after the ABO group. Rh proteins are related to the ammonium transport (Amt) protein family and there is considerable evidence that, like Amt proteins, they function as ammonia channels. We have now solved the structure of a rare bacterial homologue (from Nitrosomonas europaea) of human Rh50 proteins at a resolution of 1.3 A. The protein is a trimer, and analysis of its subunit interface strongly argues that all Rh proteins are likely to be homotrimers and that the human erythrocyte proteins RhAG and RhCE/D are unlikely to form heterooligomers as previously proposed. When compared with structures of bacterial Amt proteins, NeRh50 shows several distinctive features of the substrate conduction pathway that support the concept that Rh proteins have much lower ammonium affinities than Amt proteins and might potentially function bidirectionally.


Assuntos
Amônia/metabolismo , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Nitrosomonas europaea/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Transporte de Íons , Dados de Sequência Molecular , Fenilalanina/química , Conformação Proteica
9.
J Bacteriol ; 189(24): 9090-100, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17921289

RESUMO

The family of ammonia and ammonium channel proteins comprises the Amt proteins, which are present in all three domains of life with the notable exception of vertebrates, and the homologous Rh proteins (Rh50 and Rh30) that have been described thus far only in eukaryotes. The existence of an RH50 gene in bacteria was first revealed by the genome sequencing of the ammonia-oxidizing bacterium Nitrosomonas europaea. Here we have used a phylogenetic approach to study the evolution of the N. europaea RH50 gene, and we show that this gene, probably as a component of an integron cassette, has been transferred to the N. europaea genome by horizontal gene transfer. In addition, by functionally characterizing the Rh50(Ne) protein and the corresponding knockout mutant, we determined that NeRh50 can mediate ammonium uptake. The RH50(Ne) gene may thus have replaced functionally the AMT gene, which is missing in the genome of N. europaea and may be regarded as a case of nonorthologous gene displacement.


Assuntos
Amônia/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Nitrosomonas europaea/genética , Nitrosomonas europaea/fisiologia , Evolução Molecular , Deleção de Genes , Filogenia , Homologia de Sequência de Aminoácidos
10.
Curr Genet ; 49(6): 364-74, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16477434

RESUMO

Ammonium transport proteins belonging to the Mep/Amt/Rh family are spread throughout all domains of life. A conserved aspartate residue plays a key role in the function of Escherichia coli AmtB. Here, we show that the analogous aspartate residue is critical for the transport function of eukaryotic family members as distant as the yeast transporter/sensor Mep2 and the human RhAG and RhCG proteins. In yeast Mep2, replacement of aspartate(186) with asparagine produced an inactive transporter localized at the cell surface, whilst replacement with alanine was accompanied by stacking of the protein in the endoplasmic reticulum. Introduction of an acidic residue, glutamate, produced a partially active protein. A carboxyl group at position 186 of Mep2 therefore appears mandatory for function. Kinetic analysis shows the Mep2(D186E) variant to be particularly affected at the level of substrate affinity, suggesting an involvement of aspartate(186) in ammonium recognition. Our data also put forward that ammonium recognition and/or transport by Mep2 is required for the sensor role played in the development of pseudohyphal growth. Finally, replacement of the conserved aspartate with asparagine in human RhAG and RhCG proteins resulted in the loss of bi-directional transport function. Hence, this aspartate residue might play a preserved functional role in Mep/Amt/Rh proteins.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Sequência Conservada , Glicoproteínas de Membrana/metabolismo , Compostos de Amônio Quaternário/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Proteínas de Transporte de Cátions/genética , Humanos , Transporte de Íons/genética , Transporte de Íons/fisiologia , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Saccharomyces cerevisiae/genética , Especificidade por Substrato/genética
11.
Pflugers Arch ; 450(3): 155-67, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15856280

RESUMO

The erythroid Rh-associated glycoprotein (RhAG) is strictly required for the expression of the Rh blood group antigens carried by Rh (D,CE) proteins. A biological function for RhAG in ammonium transport has been suggested by its ability to improve survival of an ammonium-uptake-deficient yeast. We investigated the function of RhAG by studying the entry of NH3/NH4+ in HeLa cells transiently expressing the green fluorescent protein (GFP)-RhAG fusion protein and using a fluorescent proton probe to measure intracellular pH (pHi). Under experimental conditions that reduce the intrinsic Na/H exchanger activity, exposure of control cells to a 10 mM NH4Cl- containing solution induces the classic pHi response profile of cells having a high permeability to NH3 (PNH3) but relatively low permeability to NH4+ (PNH4). In contrast, under the same conditions, the pHi profile of cells expressing RhAG clearly indicated an increased PNH4, as evidenced by secondary reacidification during NH4Cl exposure and a pHi undershoot below the initial resting value upon its removal. Measurements of pHi during methylammonium exposure showed that RhAG expression enhances the influx of both the unprotonated and ionic forms of methylammonium. Using a mathematical model to adjust passive permeabilities for a fit to the pHi profiles, we found that RhAG expression resulted in a threefold increase of PNH4 and a twofold increase of PNH3. Our results are the first evidence that the human erythroid RhAG increases the transport of both NH3 and NH4+.


Assuntos
Amônia/metabolismo , Proteínas Sanguíneas/biossíntese , Glicoproteínas de Membrana/biossíntese , Compostos de Amônio Quaternário/metabolismo , Compostos de Bário/farmacologia , Transporte Biológico/fisiologia , Cloretos/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Ouabaína/farmacologia , Proteínas Recombinantes de Fusão/biossíntese , Trocadores de Sódio-Hidrogênio/metabolismo
12.
J Biol Chem ; 279(16): 15975-83, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-14761968

RESUMO

Renal ammonium (NH3 + NH4+) transport is a key process for body acid-base balance. It is well known that several ionic transport systems allow NH4+ transmembrane translocation without high specificity NH4+, but it is still debated whether NH3, and more generally, gas, may be transported by transmembrane proteins. The human Rh glycoproteins have been proposed to mediate ammonium transport. Transport of NH4+ and/or NH3 by the epithelial Rh C glycoprotein (RhCG) may be of physiological importance in renal ammonium excretion because RhCG is mainly expressed in the distal nephron. However, RhCG function is not yet established. In the present study, we search for ammonium transport by RhCG. RhCG function was investigated by electrophysiological approaches in RhCG-expressing Xenopus laevis oocytes. In the submillimolar concentration range, NH4Cl exposure induced inward currents (IAM) in voltage-clamped RhCG-expressing cells, but not in control cells. At physiological extracellular pH (pHo) = 7.5, the amplitude of IAM increased with NH4Cl concentration and membrane hyperpolarization. The amplitude of IAM was independent of external Na+ or K+ concentrations but was enhanced by alkaline pHo and decreased by acid pHo. The apparent affinity of RhCG for NH4+ was affected by NH3 concentration and by changing pHo, whereas the apparent affinity for NH3 was unchanged by pHo, consistent with direct NH3 involvement in RhCG function. The enhancement of methylammonium-induced current by NH3 further supported this conclusion. Exposure to 500 microm NH4Cl induced a biphasic intracellular pH change in RhCG-expressing oocytes, consistent with both NH3 and NH4+ enhanced influx. Our results support the hypothesis of a specific role for RhCG in NH3 and NH4+ transport.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Glicoproteínas de Membrana/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Transporte de Íons/fisiologia , Rim/fisiologia , Potenciais da Membrana/fisiologia , Compostos de Amônio Quaternário/metabolismo
13.
J Am Soc Nephrol ; 13(8): 1999-2008, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12138130

RESUMO

Two non-erythroid members of the erythrocyte Rhesus (Rh) protein family, RhBG and RhCG, have been recently cloned in the kidney. These proteins share homologies with specific NH(3)/NH(4)(+) transporters (Mep/Amt) in primitive organisms and plants. When expressed in a Mep-deficient yeast, RhCG can function as a bidirectional NH(3)/NH(4)(+) transporter. The aim of this study was to determine the intrarenal and intracellular location of RhCG in rat kidney. RT-PCR on microdissected rat nephron segments demonstrated expression of mRNAs encoding RhCG in distal convoluted tubules, connecting ducts, and cortical and outer medullary collecting ducts but not in proximal tubules and thick ascending limbs of Henle's loop. Immunolocalization studies performed on rat kidney sections with rabbit anti-human RhCG 31 to 48 antibody showed labeling of the apical pole of tubular cells within the cortex, the outer medulla, and the upper portion of the inner medulla. All cells within connecting tubules had identical apical staining. In cortical collecting ducts, a subpopulation of cells that has either apical staining (alpha-intercalated cells) or diffuse staining (beta-intercalated cells) for the beta1 subunit of the H(+)-ATPase, was heavily stained at their apical pole with the RhCG antibody while principal cells identified as H(+)-ATPase negative cells showed a faint apical staining for RhCG that was much less intense than in adjacent intercalated cells. In the outer medulla and the upper portion of the inner medulla, RhCG labeling was restricted to a subpopulation of cells within the collecting duct that apically express the beta1 subunit of the H(+)-ATPase, indicating that RhCG expression in medullary collecting ducts is restricted to intercalated cells. No labeling was seen in glomeruli, proximal tubules, and limbs of Henle's loop. Immunoblotting of apical membrane fractions from rat kidney cortex with the rabbit anti-human RhCG 31 to 48 antibody revealed a doublet band at approximatively 65 kD.


Assuntos
Amônia/metabolismo , Proteínas de Transporte/metabolismo , Glicoproteínas de Membrana/metabolismo , Néfrons/metabolismo , Compostos de Amônio Quaternário/metabolismo , Animais , Membrana Celular/metabolismo , Immunoblotting , Técnicas Imunológicas , Rim/metabolismo , Córtex Renal/metabolismo , Masculino , Glicoproteínas de Membrana/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...