Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 85(21): 13793-13807, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33050698

RESUMO

Chiral organic dyes comprising a donor (D), spacer (S), primary acceptor (A1), chiral bridge (B(S)), and final acceptor/radical (A2)/(R) have been synthesized and fully characterized. The goal behind this synthetic pursuit is to study whether the chiral dyes can impart a chiral-induced spin selectivity (CISS) spin-filtering effect during an intramolecular charge-transfer (CT) process. Additionally, appending a stable free radical (SFR) allows the study of how an unpaired spin influences the CT state. The dyes are reported to vary in the position of (A1) with respect to (B(S)). Two series of dyes have been synthesized: one series incorporates (A1) before (B(S)) and the second series places (A1) after (B(S)). In the case where (A1) is before (B(S)), CT is observed between (D) and (A1), but the CT state does not transverse over the chiral bridge to the final (A2)/(R) termini. However, when (A1) is placed after (B(S)), CT over or through the bridge occurs. Computations support the experimental data, which indicate that it is necessary to have (A1) located after (B(S)) to achieve CT over the chiral bridge. Hence, the second set of dyes are optimal candidates to explore intramolecular CISS.

2.
J Phys Chem A ; 124(30): 6168-6176, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32551620

RESUMO

Switchable coupling between two qubits is important for quantum information science (QIS). As a proof of concept, a series of mesosubstituted porphyrins have been synthesized with a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl stable free radical (SFR) appended and metalated with Cu(II), Ni(II), and Zn(II) in order to explore the interaction between the SFR doublet state and metalloporphyrin. The spin state of the porphyrin varies upon metal insertion, where Zn(II) is a diamagnetic metal, Cu(II) is paramagnetic, and Ni(II) can be switched from a diamagnetic square-planar structure to a paramagnetic octahedral state by complexation with a solvent (i.e., pyridine or tetrahydrofuran). Time-resolved electron paramagnetic resonance (EPR) measurements reveal that upon photoexcitation, the Zn(II) and free-base porphyrin species demonstrate different magnetic exchange regimes between the porphyrin triplet excited states and the SFR doublet state, with the Zn derivative populating a quartet state (i.e., moderate magnetic exchange), whereas the free-base derivative remains a triplet (i.e., weak magnetic exchange). Transient absorption measurements corroborate the TREPR results, demonstrating a 66% increase in the singlet excited-state decay rate due to enhanced intersystem crossing for the Zn(II) derivative in comparison to a modest 14% enhancement for the free-base porphyrin. These results enable the realization of a switchable qubit coupler, depending upon Zn metal insertion to the free-base porphyrin, which has potential QIS applications.

3.
Chempluschem ; 84(6): 766-771, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31944029

RESUMO

A series of electronically tuned asymmetric porphyrins have been synthesized for use in p-type solar cells. The porphyrin derivatives were strategically designed with electron-withdrawing capability and an electronic dipole gradient to aid in electron-harvesting capacity from a nickel oxide cathode. Specifically, the porphyrins were substituted at the meso position with different arrangements of the electron-withdrawing pentafluorobenzene moiety, electron-donating/coordinating 4-pyridyl ligand, and an electron withdrawing/synthetically modifiable 4-cyanophenyl unit. Two distinct free-base porphyrins were synthesized, one of which was further metallated with nickel(II). The porphyrins were fully characterized and their electronic properties explored experimentally by electrochemistry, and both steady state and time-resolved spectroscopy. Finally, the porphyrins were incorporated into a p-type solar cell device utilizing NiO as the cathode, and demonstrating a preliminary maximum performance of η(%)=0.082 and IPCEMAX (%)=26.0 without co-sensitization.

4.
Nanoscale ; 8(19): 10113-23, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27122097

RESUMO

We show unambiguous and compelling evidence by means of pump-probe experiments, which are complemented by calculations using ab initio multireference perturbation theory, for intramolecular singlet fission (SF) within two synthetically tailored pentacene dimers with cross-conjugation, namely XC1 and XC2. The two pentacene dimers differ in terms of electronic interactions as evidenced by perturbation of the ground state absorption spectra stemming from stronger through-bond contributions in XC1 as confirmed by theory. Multiwavelength analysis, on one hand, and global analysis, on the other hand, confirm that the rapid singlet excited state decay and triplet excited state growth relate to SF. SF rate constants and quantum yields increase with solvent polarity. For example, XC2 reveals triplet quantum yields and rate constants as high as 162 ± 10% and (0.7 ± 0.1) × 10(12) s(-1), respectively, in room temperature solutions.

5.
Proc Natl Acad Sci U S A ; 112(17): 5325-30, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25858954

RESUMO

Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley-Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule.

6.
J Am Chem Soc ; 137(2): 857-63, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25478639

RESUMO

Understanding the fundamental spin dynamics of photoexcited pentacene derivatives is important in order to maximize their potential for optoelectronic applications. Herein, we report on the synthesis of two pentacene derivatives that are functionalized with the [(2,2,6,6-tetramethylpiperidin-1-yl)oxy] (TEMPO) stable free radical. The presence of TEMPO does not quench the pentacene singlet excited state, but does quench the photoexcited triplet excited state as a function of TEMPO-to-pentacene distance. Time-resolved electron paramagnetic resonance experiments confirm that triplet quenching is accompanied by electron spin polarization transfer from the pentacene excited state to the TEMPO doublet state in the weak coupling regime.


Assuntos
Óxidos N-Cíclicos/química , Fenômenos Magnéticos , Naftacenos/química , Processos Fotoquímicos , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Modelos Moleculares , Conformação Molecular , Naftacenos/síntese química
7.
Angew Chem Int Ed Engl ; 53(1): 310-4, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24288289

RESUMO

Conformational changes in the conjugated backbone of poly- and oligodiacetylenes (PDAs and ODAs) play an important role in determining the electronic properties of these compounds. At the same time, conformational changes can also result in a folded structure that shows helical chirality. Using d-camphor as a chiral building block, we have designed a high-yielding, iterative synthesis of monodisperse, optically pure cis-oligodiacetylenes (ODAs). cis-ODAs up to the tridecamer have been formed, which is the longest monodisperse cis-ODA reported to date. UV/Vis spectroscopy suggests a large effective conjugation length in THF, likely the result of a linear, planar conformation in this solvent. High-resolution STM/AFM measurements of the nonamer cast from THF onto HOPG show a linear structure. In iPrOH, circular dichroism (CD) spectra suggest the formation of chiral aggregates for ODAs with at least nine d-camphor units, based on a strong CD response.

8.
Org Lett ; 11(3): 519-22, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19128149

RESUMO

The mechanism of the Fritsch-Buttenberg-Wiechell rearrangement of (13)C labeled precursors has been examined to determine the propensity of the alkynyl (R-CC-) group to migrate in an alkylidene carbenoid species. Reaction of dibromoolefins with n-BuLi and ketones with Me(3)SiC(Li)N(2) both demonstrate that the alkynyl moiety readily undergoes 1,2-migration from carbenoid intermediates.

9.
J Phys Chem B ; 111(24): 6728-37, 2007 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-17309293

RESUMO

A t-butylphenylnitroxide (BPNO*) stable radical is attached to an electron donor-bridge-acceptor (D-B-A) system having well-defined distances between the components: MeOAn-6ANI-Ph(BPNO*)-NI, where MeOAn=p-methoxyaniline, 6ANI=4-(N-piperidinyl)naphthalene-1,8-dicarboximide, Ph=phenyl, and NI=naphthalene-1,8:4,5-bis(dicarboximide). MeOAn-6ANI, BPNO*, and NI are attached to the 1, 3, and 5 positions of the Ph bridge, respectively. Time-resolved optical and EPR spectroscopy show that BPNO* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Ph(BPNO*)-NI-*), resulting in slower charge recombination within the triradical, as compared to the corresponding biradical lacking BPNO*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and NI-* is not altered by the presence of BPNO*. However, the increased spin density on the bridge greatly increases radical pair (RP) intersystem crossing from the photogenerated singlet RP to the triplet RP. Rapid formation of the triplet RP makes it possible to observe a biexponential decay of the total RP population with components of tau=740 ps (0.75) and 104 ns (0.25). Kinetic modeling shows that the faster decay rate is due to rapid establishment of an equilibrium between the triplet RP and the neutral triplet state resulting from charge recombination, whereas the slower rate monitors recombination of the singlet RP to ground state.

10.
J Phys Chem A ; 110(23): 7323-33, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16759120

RESUMO

The stable free radical 2,2,6,6-tetramethylpiperidinoxyl (TEMPO, T*) was covalently attached to the electron acceptor in a donor-chromophore-acceptor (D-C-A) system, MeOAn-6ANI-Phn-A-T*, having well-defined distances between each component, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-l,8-dicarboximide, Ph = 2,5-dimethylphenyl (n = 0,1), and A = naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI). Using both time-resolved optical and EPR spectroscopy, we show that T* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Phn-A-*-T*), resulting in modulation of the charge recombination rate within the triradical compared with the corresponding biradical lacking T*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and A-* is not altered by the presence of T*, which interacts most strongly with A-* and accelerates radical pair intersystem crossing. Charge recombination within the triradicals results in the formation of 2,4(MeOAn-6ANI-Phn-3*NI-T*) or 2,4(MeOAn-3*6ANI-Phn-PI-T*) in which T* is strongly spin polarized in emission. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, the rate at which the net spin polarization appears on T* closely follows the photogenerated radical ion pair decay rate. This effect is attributed to antiferromagnetic coupling between T* and the local triplet state 3NI, which is populated following charge recombination. These results are explained using a switch in the spin basis set between the triradical and the three-spin charge recombination product having both T* and 3*NI or 3*6ANI present.

11.
J Am Chem Soc ; 128(13): 4356-64, 2006 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-16569012

RESUMO

Appending a stable radical to the bridge molecule in a donor-bridge-acceptor system (D-B-A) is potentially an important way to control charge- and spin-transfer dynamics through D-B-A. We have attached a nitronyl nitroxide (NN*) stable radical to a D-B-A system having well-defined distances between the components: MeOAn-6ANI-Ph(NN*)-NI, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, Ph = phenyl, and NI = naphthalene-1,8:4,5-bis(dicarboximide). MeOAn-6ANI, NN*, and NI are attached to the 1, 3, and 5 positions of the Ph bridge. Using both time-resolved optical and EPR spectroscopy, we show that NN* influences the spin dynamics of the photogenerated triradical states (2,4)(MeOAn(+)*-6ANI-Ph(NN*)-NI(-)*), resulting in slower charge recombination within the triradical compared to the corresponding biradical lacking NN*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn(+)(*) and NI(-)(*) is not altered by the presence of NN*, which only accelerates radical pair intersystem crossing. Charge recombination within the triradical results in the formation of (2,4)(MeOAn-6ANI-Ph(NN*)-(3)NI), in which NN* is strongly spin-polarized. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, net spin polarization appears on NN* with the same time constant as describes the photogenerated radical ion pair decay. This effect is attributed to antiferromagnetic coupling between NN* and the local triplet state (3)NI, which is populated following charge recombination. This requires an effective switch in the spin basis set between the triradical and the three-spin charge recombination product having both NN* and (3)NI present.

12.
J Org Chem ; 70(4): 1486-9, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15704992

RESUMO

[reaction: see text] Cyclic imides within six-membered rings are shown to undergo efficient N-arylation using various arylboronic esters mediated by copper(II) acetate in the presence of an amine base and oxygen atmosphere with gentle heating. Until now, the synthesis of N-arylated cyclic imides having six-membered rings was restricted largely to strongly heating anilines in the presence of anhydrides. This reaction is applicable to the synthesis of new organic materials based on arylene imide and bis(imide) dyes, such as perylene-3,4:9,10-bis(dicarboximide)s.

13.
J Am Chem Soc ; 126(8): 2326-7, 2004 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-14982435

RESUMO

It is well known that the molecular structure of an electron donor-acceptor system can be changed to optimize the electronic coupling between photogenerated radical ion pairs (PRPs), resulting in favorable charge separation (CS) and charge recombination (CR) rates. It would be far more convenient to avoid extensive synthetic modifications to the structure to achieve the same ends by perturbing the electronic properties of the PRP. We present here results on PRPs within rodlike donor-acceptor molecules having a covalently attached stable 2,2,6,6-tetramethylpiperidinoxyl radical (T*). The distances and orientations between all three radicals are highly restricted by the intervening molecular structure, making it possible to directly measure both the CR dynamics and the spin-spin exchange interaction, 2JPRP, between the radicals within the PRPs. The molecular triads studied are MeOAn-6ANI-PI-T* and MeOAn-6ANI-NI-T*, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, NI = naphthalene-1,8:4,5-bis(dicarboximide), and PI = pyromellitimide. These molecules have been characterized using femtosecond and nanosecond transient absorption spectroscopy as well as measurements of 2JPRP using magnetic field effects on the triplet state yield resulting from CR. We find that T* enhances radical pair intersystem crossing (EISC), resulting in an increase or decrease in the PRP lifetime depending on the relative ordering of the energy levels of the PRP and the local neutral triplet states. This is especially pronounced when the PRP is nearly isoenergetic with the neutral triplet state, as is the case for MeOAn-6ANI-NI-T*. The dependence of the 3*NI and 3*6ANI yield on an applied external magnetic field shows a distinct resonance at 2JPRP, the magnitude of which is not perturbed by the presence of the third spin. The sensitivity of this system to changes in spin state may offer ways to externally control the radical ion pair dynamics using pulsed microwaves.

14.
J Org Chem ; 68(4): 1339-47, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12585873

RESUMO

Unsymmetrically substituted 1,3-butadiynes and 1,3,5-hexatriynes are synthesized in four steps from commercially available aldehydes or carboxylic acids. The key step in this process involves a Fritsch-Buttenberg-Wiechell rearrangement, in which an alkylidene carbenoid intermediate subsequently rearranges to the desired polyyne. This rearrangement proceeds under mild conditions, and it is tolerant of a range of functionalities. In general, the procedurally facile formation of the dibromoolefinic precursors, in combination with the effectiveness of the rearrangement step, makes this procedure an attractive alternative to traditional methods for di- and triyne synthesis that utilize palladium or copper catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...