Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transfusion ; 56(8): 2122-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27239725

RESUMO

BACKGROUND: Fetal RHD genotyping allows targeted diagnostic testing, fetal surveillance, and eventually intrauterine treatment to D-alloimmunized pregnant women who carry an RHD+ fetus. However, false-positive and false-negative results of noninvasive prenatal fetal RHD genotyping have been described due to a variety of causes. In this case report we present two cases where noninvasive fetal RHD typing was complicated by a previous bone marrow transplantation (BMT). CASE REPORT: We describe two women with a history of allogeneic BMT in early childhood. Both were born D+ and received a transplant of their D- male sibling. Anti-D were detected during pregnancy in one of them. The biologic father of this pregnancy was D+. In both cases polymerase chain reaction procedures specific for RHD on maternal plasma DNA were positive whereas a D- neonate was born in one case (Case 1). CONCLUSION: False-positive results of noninvasive fetal RHD genotyping occur in D+ women transplanted with marrow of a D- donor, due to circulating cell-free DNA originating from nonhematopoietic tissue. The cases highlight that health care professionals and laboratories should be aware that allogeneic BMT can be a cause for false-positive results in fetal RHD genotyping with cell-free DNA in maternal plasma, and likewise the wrong fetal sex can be reported in the case of a male donor and a female fetus. Based on one of the cases we also recommend giving D- blood products to young female patients who receive a BMT of D- donors.


Assuntos
Transplante de Medula Óssea , Sistema do Grupo Sanguíneo Rh-Hr/genética , Adulto , Feminino , Genótipo , Humanos , Reação em Cadeia da Polimerase , Gravidez , Adulto Jovem
2.
Br J Haematol ; 173(3): 469-79, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27018217

RESUMO

To guide anti-D prophylaxis, Dutch D- pregnant women are offered a quantitative fetal-RHD-genotyping assay to determine the RHD status of their fetus. This allowed us to determine the frequency of different maternal RHD variants in 37 782 serologically D- pregnant women. A variant allele is present in at least 0·96% of Dutch D- pregnant women The D- serology could be confirmed after further serological testing in only 54% of these women, which emphasizes the potential relevance of genotyping of blood donors. 43 different RHD variant alleles were detected, including 15 novel alleles (11 null-, 2 partial D- and 2 DEL-alleles). Of those novel null alleles, one allele contained a single missense mutation (RHD*443C>G) and one allele had a single amino acid deletion (RHD*424_426del). The D- phenotype was confirmed by transduction of human D- erythroblasts, consolidating that, for the first time, a single amino acid change or deletion causes the D- phenotype. Transduction also confirmed the phenotypes for the two new variant DEL-alleles (RHD*721A>C and RHD*884T>C) and the novel partial RHD*492C>A allele. Notably, in three additional cases the DEL phenotype was observed but sequencing of the coding sequence, flanking introns and promoter region revealed an apparently wild-type RHD allele without mutations.


Assuntos
Frequência do Gene , Variação Genética , Sistema do Grupo Sanguíneo Rh-Hr/genética , Imunoglobulina rho(D)/genética , Alelos , Feminino , Doenças Fetais/diagnóstico , Doenças Fetais/genética , Genótipo , Humanos , Mutação , Países Baixos , Fenótipo , Gravidez
3.
Transfus Med Hemother ; 36(3): 162-167, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-21113258

RESUMO

The Bloodgen project was funded by the European Commission between 2003 and 2006, and involved academic blood centres, universities, and Progenika Biopharma S.A., a commercial supplier of genotyping platforms that incorporate glass arrays. The project has led to the development of a commercially available product, BLOODchip, that can be used to comprehensively genotype an individual for all clinically significant blood groups. The intention of making this system available is that blood services and perhaps even hospital blood banks would be able to obtain extended information concerning the blood group of routine blood donors and vulnerable patient groups. This may be of significant use in the current management of multi-transfused patients who become alloimmunised due to incomplete matching of blood groups. In the future it can be envisaged that better matching of donor-patient blood could be achieved by comprehensive genotyping of every blood donor, especially regular ones. This situation could even be extended to genotyping every individual at birth, which may prove to have significant long-term health economic benefits as it may be coupled with detection of inborn errors of metabolism.

5.
Br J Haematol ; 122(2): 333-40, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12846905

RESUMO

The Rh blood group system represents a major immunodominant protein complex on red blood cells (RBC). Recently, the Rh homologues RhAG and RhCG were shown to promote ammonium ion transport in yeast. In this study, we showed that also in RBC the human Rh complex functions as an exporter of ammonium ions. We measured ammonium import during the incubation of RBC in a solution containing a radiolabelled analogue of NH4Cl (14C-methyl-NH3Cl). Rhnull cells of the regulator type (expressing no Rh complex proteins) accumulated significantly higher levels (P = 0.05) of radiolabelled methyl-ammonium ions than normal RBC, at room temperature. Rhnull cells of the amorph type (expressing limited amounts of Rh complex proteins) accumulated an intermediate amount of methyl-ammonium ions. To show that decreased ammonium export contributes to its accumulation, the release of intracellular methyl-ammonium from the cells was measured over time. In 30 s, normal RBC released 87% of the intracellular methyl-ammonium ions, whereas Rhnull cells of the regulator type released only 46%. We conclude that the Rh complex is involved in the export of ammonium from RBC.


Assuntos
Eritrócitos/metabolismo , Ferro/metabolismo , Compostos de Amônio Quaternário/metabolismo , Sistema do Grupo Sanguíneo Rh-Hr/metabolismo , Benzilaminas/metabolismo , Transporte Biológico , Radioisótopos de Carbono/metabolismo , Células Cultivadas , Humanos , Metilaminas/metabolismo , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...