Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; : e0048124, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980067

RESUMO

The annual meeting for the Intermountain Branch was held in April 2024 on the campus of Brigham Young University. There were 127 branch members from Utah, Idaho, and Nevada who attended the meeting and were composed of undergraduate students, graduate or medical students, and faculty. This report highlights the diversity of, and the emerging trends in, the research conducted by American Society for Microbiology members in the Intermountain Branch.

2.
Mil Med ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935402

RESUMO

INTRODUCTION: Low back pain (LBP) is highly prevalent after lower limb amputation (LLA) and contributes to substantial reductions in quality of life and function. Towards understanding pathophysiological mechanisms underlying LBP after LLA, this article compares lumbar spine pathologies and muscle morphologies between individuals with LBP, with and without LLA. MATERIALS AND METHODS: We queried electronic medical records of Service members with and without LLA who sought care for LBP at military treatment facilities between January 2002 and May 2020. Two groups with cLBP, one with (n = 15) and one without unilateral transtibial LLA (n = 15), were identified and randomly chosen from a larger sample. Groups were matched by age, mass, and sex. Lumbar muscle morphology, Pfirrmann grades, Modic changes, facet arthrosis, Meyerding grades, and lordosis angle were determined from radiographs and magnetic resonance images available in the medical record. Independent t-tests compared variables between cohorts while multiple regression models determined if intramuscular fat influenced Pfirrmann grades. Chi-square determined differences in presence of spondylolysis and facet arthrosis. RESULTS: Lordosis angle was larger with LLA (P = 0.01). Spondylolysis was more prevalent with LLA (P = 0.008; 40%) whereas facet arthrosis was similar between cohorts (P = 0.3). Muscle area was not different between cohorts, yet intramuscular fat was greater with LLA (P ≤ 0.05). Intramuscular fat did not influence Pfirrmann grades (P > 0.15). CONCLUSIONS: Despite similar lumbar muscle size, those with unilateral LLA may be predisposed to progress to symptomatic spondylolisthesis and intramuscular fat. Surgical and/or rehabilitation interventions may mitigate long-term effects of diminished spinal health, decrease LBP-related disability, and improve function for individuals with LLA.

3.
Elife ; 122023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36820519

RESUMO

Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.


Assuntos
Caenorhabditis elegans , Canal de Liberação de Cálcio do Receptor de Rianodina , Vesículas Sinápticas , Animais , Caenorhabditis elegans/fisiologia , Cálcio/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...