Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Immunol Rev ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716867

RESUMO

Commensal microbes have the capacity to affect development and severity of autoimmune diseases. Germ-free (GF) animals have proven to be a fine tool to obtain definitive answers to the queries about the microbial role in these diseases. Moreover, GF and gnotobiotic animals can be used to dissect the complex symptoms and determine which are regulated (enhanced or attenuated) by microbes. These include disease manifestations that are sex biased. Here, we review comparative analyses conducted between GF and Specific-Pathogen Free (SPF) mouse models of autoimmunity. We present data from the B6;NZM-Sle1NZM2410/AegSle2NZM2410/AegSle3NZM2410/Aeg-/LmoJ (B6.NZM) mouse model of systemic lupus erythematosus (SLE) characterized by multiple measurable features. We compared the severity and sex bias of SPF, GF, and ex-GF mice and found variability in the severity and sex bias of some manifestations. Colonization of GF mice with the microbiotas taken from B6.NZM mice housed in two independent institutions variably affected severity and sexual dimorphism of different parameters. Thus, microbes regulate both the severity and sexual dimorphism of select SLE traits. The sensitivity of particular trait to microbial influence can be used to further dissect the mechanisms driving the disease. Our results demonstrate the complexity of the problem and open avenues for further investigations.

2.
Viruses ; 15(2)2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36851600

RESUMO

Both viruses and bacteria produce "pathogen associated molecular patterns" that may affect microbial pathogenesis and anti-microbial responses. Additionally, bacteria produce metabolites, while viruses could change the metabolic profiles of the infected cells. Here, we used an unbiased metabolomics approach to profile metabolites in spleens and blood of murine leukemia virus-infected mice monocolonized with Lactobacillus murinus to show that viral infection significantly changes the metabolite profile of monocolonized mice. We hypothesize that these changes could contribute to viral pathogenesis or to the host response against the virus and thus open a new avenue for future investigations.


Assuntos
Infecções por Retroviridae , Animais , Camundongos , Bactérias , Metabolômica , Vírus da Leucemia Murina , Baço
3.
Cell Host Microbe ; 31(2): 213-227.e9, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36603588

RESUMO

Diet and commensals can affect the development of autoimmune diseases like type 1 diabetes (T1D). However, whether dietary interventions are microbe-mediated was unclear. We found that a diet based on hydrolyzed casein (HC) as a protein source protects non-obese diabetic (NOD) mice in conventional and germ-free (GF) conditions via improvement in the physiology of insulin-producing cells to reduce autoimmune activation. The addition of gluten (a cereal protein complex associated with celiac disease) facilitates autoimmunity dependent on microbial proteolysis of gluten: T1D develops in GF animals monocolonized with Enterococcus faecalis harboring secreted gluten-digesting proteases but not in mice colonized with protease deficient bacteria. Gluten digestion by E. faecalis generates T cell-activating peptides and promotes innate immunity by enhancing macrophage reactivity to lipopolysaccharide (LPS). Gnotobiotic NOD Toll4-negative mice monocolonized with E. faecalis on an HC + gluten diet are resistant to T1D. These findings provide insights into strategies to develop dietary interventions to help protect humans against autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1 , Microbiota , Camundongos , Animais , Humanos , Diabetes Mellitus Tipo 1/prevenção & controle , Glutens , Camundongos Endogâmicos NOD , Proteólise , Dieta
4.
bioRxiv ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36711645

RESUMO

Both viruses and bacteria produce 'pathogen associated molecular patterns' that may affect microbial pathogenesis and anti-microbial responses. Additionally, bacteria produce metabolites while viruses could change metabolic profiles of the infected cells. Here, we used an unbiased metabolomics approach to profile metabolites in spleens and blood of Murine Leukemia Virus-infected mice monocolonized with Lactobacillus murinus to show that viral infection significantly changes the metabolite profile of monocolonized mice. We hypothesize that these changes could contribute to viral pathogenesis or to the host response against the virus and thus, open a new avenue for future investigations.

5.
Cell Rep ; 40(11): 111341, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103821

RESUMO

The influence of the microbiota on viral transmission and replication is well appreciated. However, its impact on retroviral pathogenesis outside of transmission/replication control remains unknown. Using murine leukemia virus (MuLV), we found that some commensal bacteria promoted the development of leukemia induced by this retrovirus. The promotion of leukemia development by commensals is due to suppression of the adaptive immune response through upregulation of several negative regulators of immunity. These negative regulators include Serpinb9b and Rnf128, which are associated with a poor prognosis of some spontaneous human cancers. Upregulation of Serpinb9b is mediated by sensing of bacteria by the NOD1/NOD2/RIPK2 pathway. This work describes a mechanism by which the microbiota enhances tumorigenesis within gut-distant organs and points at potential targets for cancer therapy.


Assuntos
Leucemia , Retroviridae , Animais , Bactérias/metabolismo , Carcinogênese , Humanos , Camundongos , Simbiose
6.
iScience ; 25(5): 104241, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35494242

RESUMO

A skewed tryptophan metabolism has been reported in patients with lupus. Here, we investigated the mechanisms by which it occurs in lupus-susceptible mice, and how tryptophan metabolites exacerbate T cell activation. Metabolomic analyses demonstrated that tryptophan is differentially catabolized in lupus mice compared to controls and that the microbiota played a role in this skewing. There was no evidence for differential expression of tryptophan catabolic enzymes in lupus mice, further supporting a major contribution of the microbiota to skewing. However, isolated lupus T cells processed tryptophan differently, suggesting a contribution of T cell intrinsic factors. Functionally, tryptophan and its microbial product tryptamine increased T cell metabolism and mTOR activation, while kynurenine promoted interferon gamma production, all of which have been associated with lupus. These results showed that a combination of microbial and T cell intrinsic factors promotes the production of tryptophan metabolites that enhance inflammatory phenotypes in lupus T cells.

7.
J Immunol ; 207(12): 2944-2951, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34810225

RESUMO

H2-O (human HLA-DO) is a relatively conserved nonclassical MHC class II (MHCII)-like molecule. H2-O interaction with human HLA-DM edits the repertoire of peptides presented to TCRs by MHCII. It was long hypothesized that human HLA-DM inhibition by H2-O provides protection from autoimmunity by preventing binding of the high-affinity self-peptides to MHCII. The available evidence supporting this hypothesis, however, was inconclusive. A possibility still remained that the effect of H2-O deficiency on autoimmunity could be better revealed by using H2-O-deficient mice that were already genetically predisposed to autoimmunity. In this study, we generated and used autoimmunity-prone mouse models for systemic lupus erythematosus and organ-specific autoimmunity (type 1 diabetes and multiple sclerosis) to definitively test whether H2-O prevents autoimmune pathology. Whereas our data failed to support any significance of H2-O in protection from autoimmunity, we found that it was critical for controlling a γ-herpesvirus, MHV68. Thus, we propose that H2-O editing of the MHCII peptide repertoire may have evolved as a safeguard against specific highly prevalent viral pathogens.


Assuntos
Autoimunidade , Antígenos HLA-D , Animais , Apresentação de Antígeno , Antígenos HLA-D/genética , Antígenos de Histocompatibilidade Classe II , Humanos , Camundongos , Peptídeos , Receptores de Antígenos de Linfócitos T
8.
Cell Host Microbe ; 29(3): 315-317, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33705699

RESUMO

30 million years ago, ancestors of Old World primates lost the ability to produce α-gal. In this issue of Cell Host & Microbe, Singh et al. (2021) show that the loss is associated with increased resistance to sepsis, but that this advantage comes alongside a cost of accelerated reproductive senescence.


Assuntos
Primatas , Sepse , Animais , Anticorpos , Primatas/imunologia
9.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999021

RESUMO

Viruses, including retroviruses, can be passed from mothers to their progeny during birth and breastfeeding. It is assumed that newborns may develop immune tolerance to milk-transmitted pathogens similarly to food antigens. I/LnJ mice are uniquely resistant to retroviruses acquired as newborns or as adults as they produce virus-neutralizing antibodies (Abs). A loss-of-function allele of H2-Ob (Ob), originally mapped within the virus infectivity controller 1 (vic1) locus, is responsible for production of antiretrovirus Abs in I/LnJ mice. Importantly, Ob-deficient and vic1 I/LnJ congenic mice on other genetic backgrounds produce antivirus Abs when infected as adults, but not as newborns. We report here that I/LnJ mice carry an additional genetic locus, virus infectivity controller 2 (vic2), that abrogates neonatal immune tolerance to retroviruses. Further genetic analysis mapped the vic2 locus to the telomeric end of chromosome 15. Identification of the vic2 gene and understanding of the related signaling pathways would make blocking of neonatal immune tolerance to retroviruses an achievable goal.IMPORTANCE This work describes a previously unknown genetic mechanism that allows neonates to respond to infections as efficiently as adults.


Assuntos
Tolerância Imunológica/genética , Infecções por Retroviridae/imunologia , Retroviridae/imunologia , Animais , Anticorpos Neutralizantes , Mapeamento Cromossômico , Feminino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Infecções por Retroviridae/virologia
10.
Nat Immunol ; 21(5): 589, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238948

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Nat Immunol ; 21(4): 455-463, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32152506

RESUMO

The nature of autoantigens that trigger autoimmune diseases has been much discussed, but direct biochemical identification is lacking for most. Addressing this question demands unbiased examination of the self-peptides displayed by a defined autoimmune major histocompatibility complex class II (MHC-II) molecule. Here, we examined the immunopeptidome of the pancreatic islets in non-obese diabetic mice, which spontaneously develop autoimmune diabetes based on the I-Ag7 variant of MHC-II. The relevant peptides that induced pathogenic CD4+ T cells at the initiation of diabetes derived from proinsulin. These peptides were also found in the MHC-II peptidome of the pancreatic lymph nodes and spleen. The proinsulin-derived peptides followed a trajectory from their generation and exocytosis in ß cells to uptake and presentation in islets and peripheral sites. Such a pathway generated conventional epitopes but also resulted in the presentation of post-translationally modified peptides, including deamidated sequences. These analyses reveal the key features of a restricted component in the self-MHC-II peptidome that caused autoreactivity.

12.
Diabetes ; 69(7): 1439-1450, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198213

RESUMO

The pancreatic islet is a highly vascularized endocrine micro-organ. The unique architecture of rodent islets, a so-called core-mantle arrangement seen in two-dimensional images, led researchers to seek functional implications for islet hormone secretion. Three models of islet blood flow were previously proposed, all based on the assumption that islet microcirculation occurs in an enclosed structure. Recent electrophysiological and molecular biological studies using isolated islets also presumed unidirectional flow. Using intravital analysis of the islet microcirculation in mice, we found that islet capillaries were continuously integrated to those in the exocrine pancreas, which made the islet circulation rather open, not self-contained. Similarly in human islets, the capillary structure was integrated with pancreatic microvasculature in its entirety. Thus, islet microcirculation has no relation to islet cytoarchitecture, which explains its well-known variability throughout species. Furthermore, tracking fluorescent-labeled red blood cells at the endocrine-exocrine interface revealed bidirectional blood flow, with similar variability in blood flow speed in both the intra- and extra-islet vasculature. To date, the endocrine and exocrine pancreas have been studied separately by different fields of investigators. We propose that the open circulation model physically links both endocrine and exocrine parts of the pancreas as a single organ through the integrated vascular network.


Assuntos
Ilhotas Pancreáticas/irrigação sanguínea , Microcirculação/fisiologia , Pâncreas Exócrino/irrigação sanguínea , Animais , Capilares/fisiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Impressão Tridimensional
13.
Nat Immunol ; 21(1): 65-74, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31848486

RESUMO

The cytokine interleukin (IL)-1ß is a key mediator of antimicrobial immunity as well as autoimmune inflammation. Production of IL-1ß requires transcription by innate immune receptor signaling and maturational cleavage by inflammasomes. Whether this mechanism applies to IL-1ß production seen in T cell-driven autoimmune diseases remains unclear. Here, we describe an inflammasome-independent pathway of IL-1ß production that was triggered upon cognate interactions between effector CD4+ T cells and mononuclear phagocytes (MPs). The cytokine TNF produced by activated CD4+ T cells engaged its receptor TNFR on MPs, leading to pro-IL-1ß synthesis. Membrane-bound FasL, expressed by CD4+ T cells, activated death receptor Fas signaling in MPs, resulting in caspase-8-dependent pro-IL-1ß cleavage. The T cell-instructed IL-1ß resulted in systemic inflammation, whereas absence of TNFR or Fas signaling protected mice from CD4+ T cell-driven autoimmunity. The TNFR-Fas-caspase-8-dependent pathway provides a mechanistic explanation for IL-1ß production and its consequences in CD4+ T cell-driven autoimmune pathology.


Assuntos
Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Células Mieloides/metabolismo , Animais , Caspase 1/genética , Caspase 8/metabolismo , Células Cultivadas , Células Dendríticas/imunologia , Proteína Ligante Fas/metabolismo , Imunidade Inata/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Cell Rep ; 29(3): 541-550.e4, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618625

RESUMO

Environmental influences (infections and diet) strongly affect a host's microbiota. However, host genetics may influence commensal communities, as suggested by the greater similarity between the microbiomes of identical twins compared to non-identical twins. Variability of human genomes and microbiomes complicates the understanding of polymorphic mechanisms regulating the commensal communities. Whereas animal studies allow genetic modifications, they are sensitive to influences known as "cage" or "legacy" effects. Here, we analyze ex-germ-free mice of various genetic backgrounds, including immunodeficient and major histocompatibility complex (MHC) congenic strains, receiving identical input microbiota. The host's polymorphic mechanisms affect the gut microbiome, and both innate (anti-microbial peptides, complement, pentraxins, and enzymes affecting microbial survival) and adaptive (MHC-dependent and MHC-independent) pathways influence the microbiota. In our experiments, polymorphic mechanisms regulate only a limited number of microbial lineages (independently of their abundance). Our comparative analyses suggest that some microbes may benefit from the specific immune responses that they elicit.


Assuntos
Imunidade Adaptativa/genética , Imunidade Inata/genética , Polimorfismo Genético , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Defensinas/genética , Defensinas/metabolismo , Microbioma Gastrointestinal , Expressão Gênica , Hospedeiro Imunocomprometido , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Complexo Principal de Histocompatibilidade/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Componente Principal , RNA Ribossômico 16S/metabolismo
15.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29875252

RESUMO

An essential step in the development of effective antiviral humoral responses is cytokine-triggered class switch recombination resulting in the production of antibodies of a specific isotype. Most viral and parasitic infections in mice induce predominantly IgG2a-specific antibody responses that are stimulated by interferon gamma (IFN-γ). However, in some mice deficient in IFN-γ, class switching to IgG2a antibodies is relatively unaffected, indicating that another signal(s) can be generated upon viral or parasitic infections that trigger this response. Here, we found that a single recessive locus, provisionally called IFN-γ-independent IgG2a (Igii), confers the ability to produce IFN-γ-independent production of IgG2a antibodies upon retroviral infection. The Igii locus was mapped to chromosome 9 and was found to function in the radiation-resistant compartment. Thus, our data implicate nonhematopoietic cells in activation of antiviral antibody responses in the absence of IFN-γ.IMPORTANCE Understanding the signals that stimulate antibody production and class switch recombination to specific antibody isotypes is crucial for the development of novel vaccines and adjuvants. While an interferon gamma-mediated switch to the IgG2a isotype upon viral infection in mice has been well established, this investigation reveals a noncanonical, interferon gamma-independent pathway for antiretroviral antibody production and IgG2a class switch recombination that is controlled by a single recessive locus. Furthermore, this study indicates that the radiation-resistant compartment can direct antiviral antibody responses, suggesting that detection of infection by nonhematopoietic cells is involved is stimulating adaptive immunity.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Imunoglobulina G/sangue , Vírus/imunologia , Animais , Mapeamento Cromossômico , Interferon gama/deficiência , Camundongos , Camundongos Knockout
16.
Immunity ; 47(2): 310-322.e7, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813660

RESUMO

Select humans and animals control persistent viral infections via adaptive immune responses that include production of neutralizing antibodies. The precise genetic basis for the control remains enigmatic. Here, we report positional cloning of the gene responsible for production of retrovirus-neutralizing antibodies in mice of the I/LnJ strain. It encodes the beta subunit of the non-classical major histocompatibility complex class II (MHC-II)-like molecule H2-O, a negative regulator of antigen presentation. The recessive and functionally null I/LnJ H2-Ob allele supported the production of virus-neutralizing antibodies independently of the classical MHC haplotype. Subsequent bioinformatics and functional analyses of the human H2-Ob homolog, HLA-DOB, revealed both loss- and gain-of-function alleles, which could affect the ability of their carriers to control infections with human hepatitis B (HBV) and C (HCV) viruses. Thus, understanding of the previously unappreciated role of H2-O (HLA-DO) in immunity to infections may suggest new approaches in achieving neutralizing immunity to viruses.


Assuntos
Anticorpos Neutralizantes , Antígenos HLA-D/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Imunidade Humoral , Vírus do Tumor Mamário do Camundongo/imunologia , Vírus Rauscher/imunologia , Infecções por Retroviridae/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Apresentação de Antígeno/genética , Biologia Computacional , Feminino , Predisposição Genética para Doença , Antígenos HLA-D/genética , Células HeLa , Hepatite B/imunologia , Hepatite B/transmissão , Hepatite C/imunologia , Hepatite C/transmissão , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Imunidade Humoral/genética , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Mutação/genética , Polimorfismo Genético , Infecções por Retroviridae/transmissão
17.
Cell ; 169(7): 1170-1172, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622502

RESUMO

Survival of deleterious infections depends significantly on how much stress the affected organism can tolerate. In this issue, Weis et al. find that mice can survive sepsis by maintaining normoglycemia through ferritin's capacity to inactivate Fe2+ ions that otherwise induce free radicals impacting gluconeogenesis in the liver.


Assuntos
Gluconeogênese , Tolerância Imunológica , Animais , Camundongos , Sepse
18.
J Exp Med ; 213(10): 2147-66, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27551155

RESUMO

Atopic dermatitis (AD) is a Th2-dominated inflammatory skin disease characterized by epidermal thickening. Serum levels of IL-22, a cytokine known to induce keratinocyte proliferation, are elevated in AD, and Th22 cells infiltrate AD skin lesions. We show that application of antigen to mouse skin subjected to tape stripping, a surrogate for scratching, induces an IL-22 response that drives epidermal hyperplasia and keratinocyte proliferation in a mouse model of skin inflammation that shares many features of AD. DC-derived IL-23 is known to act on CD4(+) T cells to induce IL-22 production. However, the mechanisms that drive IL-23 production by skin DCs in response to cutaneous sensitization are not well understood. We demonstrate that IL-23 released by keratinocytes in response to endogenous TLR4 ligands causes skin DCs, which selectively express IL-23R, to up-regulate their endogenous IL-23 production and drive an IL-22 response in naive CD4(+) T cells that mediates epidermal thickening. We also show that IL-23 is released in human skin after scratching and polarizes human skin DCs to drive an IL-22 response, supporting the utility of IL-23 and IL-22 blockade in AD.


Assuntos
Polaridade Celular , Células Dendríticas/citologia , Imunização , Interleucina-23/metabolismo , Interleucinas/metabolismo , Queratinócitos/metabolismo , Pele/imunologia , Receptor 4 Toll-Like/metabolismo , Adulto , Animais , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Movimento Celular , Proliferação de Células , Células Dendríticas/metabolismo , Epiderme/patologia , Feminino , Hematopoese , Humanos , Ligantes , Linfonodos/metabolismo , Camundongos Endogâmicos BALB C , Pele/patologia , Interleucina 22
19.
J Immunol ; 197(3): 701-5, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27324130

RESUMO

Polyglandular autoimmune inflammation accompanies type 1 diabetes (T1D) in NOD mice, affecting organs like thyroid and salivary glands. Although commensals are not required for T1D progression, germ-free (GF) mice had a very low degree of sialitis, which was restored by colonization with select microbial lineages. Moreover, unlike T1D, which is blocked in mice lacking MyD88 signaling adaptor under conventional, but not GF, housing conditions, sialitis did not develop in MyD88(-/-) GF mice. Thus, microbes and MyD88-dependent signaling are critical for sialitis development. The severity of sialitis did not correlate with the degree of insulitis in the same animal and was less sensitive to a T1D-reducing diet, but it was similar to T1D with regard to microbiota-dependent sexual dimorphism. The unexpected distinction in requirements for the microbiota for different autoimmune pathologies within the same organism is crucial for understanding the nature of microbial involvement in complex autoimmune disorders, including human autoimmune polyglandular syndromes.


Assuntos
Diabetes Mellitus Tipo 1/microbiologia , Microbiota/fisiologia , Poliendocrinopatias Autoimunes/microbiologia , Sialadenite/microbiologia , Animais , Modelos Animais de Doenças , Feminino , Vida Livre de Germes , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , Caracteres Sexuais
20.
Cell Host Microbe ; 18(4): 456-62, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26468748

RESUMO

The orally transmitted retrovirus mouse mammary tumor virus (MMTV) requires the intestinal microbiota for persistence. Virion-associated lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4), stimulating production of the immunosuppressive cytokine IL-10 and MMTV evasion of host immunity. However, the mechanisms by which MMTV associates with LPS remain unknown. We find that the viral envelope contains the mammalian LPS-binding factors CD14, TLR4, and MD-2, which, in conjunction with LPS-binding protein (LBP), bind LPS to the virus and augment transmission. MMTV isolated from infected mice lacking these LBPs cannot engage LPS or stimulate TLR4 and have a transmission defect. Furthermore, MMTV incorporation of a weak agonist LPS from Bacteroides, a prevalent LPS source in the gut, significantly enhances the ability of this LPS to stimulate TLR4, suggesting that MMTV intensifies these immunostimulatory properties. Thus, an orally transmitted retrovirus can capture, modify, and exploit mammalian receptors for bacterial ligands to ensure successful transmission.


Assuntos
Interações Hospedeiro-Patógeno , Receptores de Lipopolissacarídeos/metabolismo , Vírus do Tumor Mamário do Camundongo/fisiologia , Proteínas do Envelope Viral/metabolismo , Animais , Evasão da Resposta Imune , Imunossupressores/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Ligação Proteica , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...