Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732339

RESUMO

The paper presents a system for analyzing cardiac activity with the possibility of continuous and remote monitoring. The created sensor mobile device monitors heart activity by means of the convenient and imperceptible registration of cardiac signals. At the same time, the behavior of the human body is also monitored through the accelerometer and gyroscope built into the device, thanks to which it is possible to signal in the event of loss of consciousness or fall (in patients with syncope). Conducting real-time cardio monitoring and the analysis of recordings using various mathematical methods (linear, non-linear, and graphical) enables the research, accurate diagnosis, timely assistance, and correct treatment of cardiovascular diseases. The paper examines the recordings of patients diagnosed with arrhythmia and syncope recorded by electrocardiography (ECG) sensors in real conditions. The obtained results are subjected to statistical analysis to determine the accuracy and significance of the obtained results. The studies show significant deviations in the patients with arrhythmia and syncope regarding the obtained values of the studied parameters of heart rate variability (HRV) from the accepted normal values (for example, the root mean square of successive differences between normal heartbeats (RMSSD) in healthy individuals is 24.02 ms, while, in patients with arrhythmia (6.09 ms) and syncope (5.21 ms), it is much lower). The obtained quantitative and graphic results identify some possible abnormalities and demonstrate disorders regarding the activity of the autonomic nervous system, which is directly related to the work of the heart.

2.
Diagnostics (Basel) ; 12(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35204503

RESUMO

The article presents a methodology to support the process of correct cardiodiagnostics based on cardio signals recorded with modern optical photoplethysmographic (PPG) sensor devices. An algorithm for preprocessing registered PPG signals and the formation of a time series for the analysis of heart rate variability is presented, which is an important information indicator in the diagnosis of cardiovascular diseases. In order to validate the proposed algorithm, an experimental scheme for synchronous recordings of PPG and electrocardiographic (ECG) signals and the study of the accuracy of the registered signals was created. The obtained results show high accuracy of the studied signals in terms of the following parameters: number of QRS complexes/pulse waves and mean RR intervals/PP intervals and the finding that the proposed algorithm is suitable for preprocessing PPG signals, as well as the possibility of interchangeable use of PPG and ECG. The results of the mathematical analysis of heart rate variability by applying linear methods (Time-Domain and Frequency-Domain) to two groups of people are presented: healthy controls and patients with cardiovascular disease (syncope). After determining the values of the parameters of the methods used, in order to distinguish healthy subjects from sick ones, statistical analysis was applied using t-test and Receiver Operating Characteristics (ROC) analysis. The obtained results show that the linear methods used are suitable for analysing the dynamics of PP interval series and for distinguishing healthy subjects from those with pathological diseases. The presented research and analyses can find applications in guaranteeing correctness and accuracy of conducting cardiodiagnostics in clinical practice.

3.
Diagnostics (Basel) ; 10(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438753

RESUMO

The mathematical analysis and the assessment of heart rate variability (HRV) based on computer systems can assist the diagnostic process with determining the cardiac status of patients. The new cardio-diagnostic assisting computer system created uses the classic Time-Domain, Frequency-Domain, and Time-Frequency analysis indices, as well as the nonlinear methods (Poincaré plot, Recurrence plot, Hurst R/S method, Detrended Fluctuation Analysis (DFA), Multi-Fractal DFA, Approximate Entropy and Sample Entropy). To test the feasibility of the software developed, 24-hour Holter recordings of four groups of people were analysed: healthy subjects and patients with arrhythmia, heart failure and syncope. Time-Domain (SDNN < 50 ms, SDANN < 100 ms, RMSSD < 17 ms) and Frequency-Domain (the spectrum of HRV in the LF < 550 ms2, and HF < 540 ms2) parameter values decreased in the cardiovascular disease groups compared to the control group as a result of lower HRV due to decreased parasympathetic and increased sympathetic activity. The results of the nonlinear analysis showed low values of (SD1 < 56 ms, SD2 < 110 ms) at Poincaré plot (Alpha < 90 ms) at DFA in patients with diseases.Significantly reducing these parameters are markers of cardiac dysfunction. The examined groups of patients showed an increase in the parameters (DET% > 95, REC% > 38, ENTR > 3.2) at the Recurrence plot. This is evidence of a pathological change in the regulation of heart rhythm. The system created can be useful in making the diagnosis by the cardiologist and in bringing greater accuracy and objectivity to the treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...