Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 166: 112043, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484654

RESUMO

Many individuals who experience a stroke exhibit reduced modulation of their mediolateral foot placement, an important gait stabilization strategy. One factor that may contribute to this deficit is altered somatosensory processing, which can be probed by applying vibration to the involved muscles (e.g., the hip abductors). The purpose of this study was to investigate whether appropriately controlled hip abductor vibration can increase foot placement modulation among people with chronic stroke. 40 people with chronic stroke performed a series of treadmill walking trials without vibration and with vibration of either the hip abductors or lateral trunk (a control condition) that scaled with their real-time mediolateral motion. To assess participants' vibration sensitivity, we also measured vibration detection threshold and lateral sway evoked by abductor vibration during quiet standing. As a group, foot placement modulation increased significantly with either hip or trunk vibration, compared to without vibration. However, these changes were quite variable across participants, and were not predicted by either vibration detection threshold or the lateral sway evoked by hip vibration during standing. Overall, we found that somatosensory stimulation had small, positive effects on post-stroke foot placement modulation. Unexpectedly, these effects were observed with both hip abductor and lateral trunk vibration, perhaps indicating that the trunk can also provide useful somatosensory feedback during walking. Future work is needed to determine whether repeated application of such somatosensory stimulation can produce sustained effects on this important gait stabilization strategy.


Assuntos
, Acidente Vascular Cerebral , Humanos , Pé/fisiologia , Extremidade Inferior , Marcha/fisiologia , Caminhada/fisiologia , Equilíbrio Postural/fisiologia
2.
Parkinsonism Relat Disord ; 88: 28-33, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34102418

RESUMO

INTRODUCTION: Freezing of gait (FOG) is a debilitating feature of Parkinson's disease (PD). Evidence suggests patients with FOG have increased cortical control of gait. The supplementary motor area (SMA) may be a key structure due to its connectivity with locomotor and cognitive networks. The objectives of this study were to determine (1) if SMA connectivity is disrupted in patients with FOG and (2) if "inhibitory" repetitive transcranial magnetic stimulation can decrease maladaptive SMA connectivity. METHODS: Two experiments were performed. In experiment 1 resting-state (T2* BOLD imaging) was compared between 38 PD freezers and 17 PD controls. In experiment 2, twenty PD patients with FOG were randomized to either 10 sessions of real or sham rTMS to the SMA (1 Hz, 110% motor threshold, 1200 pulses/session) combined with daily gait training. RESULTS: (Experiment 1) Freezers had increased connectivity between the left SMA and the vermis of the cerebellum and decreased connectivity between the SMA and the orbitofrontal cortex (pFDR-corr <0.05). (Experiment 2) 10 sessions of active TMS reduced SMA connectivity with the anterior cingulate, angular gyrus and the medial temporal cortex, whereas sham TMS did not reduce SMA connectivity. From a behavioral perspective, both groups showed nFOG-Q improvements (F(4, 25.7) = 3.87, p = 0.014). CONCLUSIONS: The SMA in freezers is hyper-connected to the cerebellum, a key locomotor region which may represent maladaptive compensation. In this preliminary study, 1 Hz rTMS reduced SMA connectivity however, this was not specific to the locomotor regions. Intervention outcomes may be improved with subject specific targeting of SMA.


Assuntos
Cerebelo/fisiopatologia , Conectoma , Transtornos Neurológicos da Marcha/terapia , Córtex Motor/fisiopatologia , Reabilitação Neurológica , Doença de Parkinson/terapia , Estimulação Magnética Transcraniana , Idoso , Cerebelo/diagnóstico por imagem , Terapia Combinada , Terapia por Exercício , Feminino , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-33196440

RESUMO

During walking in neurologically-intact controls, larger mediolateral pelvis displacements or velocities away from the stance foot are accompanied by wider steps. This relationship contributes to gait stabilization, as modulating step width based on pelvis motion (hereby termed a "mechanically-appropriate" step width) reduces the risk of lateral losses of balance. The relationship between pelvis displacement and step width is often weakened among people with chronic stroke (PwCS) for steps with the paretic leg. Our objective was to investigate the effects of a single exposure to a novel force-field on the modulation of paretic step width. This modulation was quantified as the partial correlation between paretic step width and pelvis displacement at the step's start (step start paretic [Formula: see text]). Following 3-minutes of normal walking, participants were exposed to 5-minutes of either force-field assistance (n = 10; pushing the swing leg toward mechanically-appropriate step widths) or perturbations (n = 10: pushing the swing leg away from mechanically-appropriate step widths). This period of assistance or perturbations was followed by a 1-minute catch period to identify after-effects, a sign of altered sensorimotor control. The effects of assistance were equivocal, without a significant direct effect or after-effect on step start paretic [Formula: see text]. In contrast, perturbations directly reduced step start paretic [Formula: see text] (p = 0.004), but were followed by a positive after-effect (p = 0.02). These results suggest that PwCS can strengthen the link between pelvis motion and paretic step width if exposed to a novel mechanical environment. Future work is needed to determine whether this effect is extended with repeated perturbation exposure.


Assuntos
Acidente Vascular Cerebral , Caminhada , Fenômenos Biomecânicos , Marcha , Humanos , Pelve
4.
Sci Rep ; 10(1): 12197, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699328

RESUMO

During human walking, step width is predicted by mediolateral motion of the pelvis, a relationship that can be attributed to a combination of passive body dynamics and active sensorimotor control. The purpose of the present study was to investigate whether humans modulate the active control of step width in response to a novel mechanical environment. Participants were repeatedly exposed to a force-field that either assisted or perturbed the normal relationship between pelvis motion and step width, separated by washout periods to detect the presence of potential after-effects. As intended, force-field assistance directly strengthened the relationship between pelvis displacement and step width. This relationship remained strengthened with repeated exposure to assistance, and returned to baseline afterward, providing minimal evidence for assistance-driven changes in active control. In contrast, force-field perturbations directly weakened the relationship between pelvis motion and step width. Repeated exposure to perturbations diminished this negative direct effect, and produced larger positive after-effects once the perturbations ceased. These results demonstrate that targeted perturbations can cause humans to adjust the active control that contributes to fluctuations in step width.


Assuntos
Perna (Membro)/fisiologia , Caminhada , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Marcha , Humanos , Masculino , Pelve/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...