Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 11(6): 1739-1756, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33932137

RESUMO

Beta-microseminoproteins (MSMBs) are small disulfide-rich proteins that are conserved among vertebrates. These proteins exhibit diverse biological activities and were mainly reported to play a role in male fertility, immunity, and embryogenesis. In this work, we focused on the chicken MSMB3 protein that was previously depicted as an egg antibacterial protein. We report that MSMB3 protein is exclusively expressed in the reproductive tissues of laying hens (in contrast to chicken MSMB1 and MSMB2 paralogs), to be incorporated in the egg white during the process of egg formation. We also showed that chicken MSMB3 possesses highly conserved orthologs in bird species, including Neognathae and Palaeognathae. Chicken MSMB3 was purified from egg white using heparin affinity chromatography and was analyzed by top-down and bottom-up proteomics. Several proteoforms could be characterized, and a homodimer was further evidenced by NMR spectroscopy. The X-ray structure of chicken MSMB3 was solved for the first time, revealing that this protein adopts a novel dimeric arrangement. The highly cationic MSMB3 protein exhibits a distinct electrostatic distribution compared with chicken MSMB1 and MSMB2 structural models, and with published mammalian MSMB structures. The specific incorporation of MSMB3 paralog in the egg, and its phylogenetic conservation in birds together with its peculiar homodimer arrangement and physicochemical properties, suggests that the MSMB3 protein has evolved to play a critical role during the embryonic development of avian species. These new data are likely to stimulate research to elucidate the structure/function relationships of MSMB paralogs and orthologs in the animal kingdom.


Assuntos
Ovos , Proteínas Secretadas pela Próstata/química , Sequência de Aminoácidos , Animais , Galinhas , Cristalografia por Raios X , Modelos Moleculares , Proteínas Secretadas pela Próstata/genética , Proteínas Secretadas pela Próstata/metabolismo , Alinhamento de Sequência
2.
Mol Cell Proteomics ; 18(Suppl 1): S174-S190, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444982

RESUMO

In many amniotes, the amniotic fluid is depicted as a dynamic milieu that participates in the protection of the embryo (cushioning, hydration, and immunity). However, in birds, the protein profile of the amniotic fluid remains unexplored, even though its proteomic signature is predicted to differ compared with that of humans. In fact, unlike humans, chicken amniotic fluid does not collect excretory products and its protein composition strikingly changes at mid-development because of the massive inflow of egg white proteins, which are thereafter swallowed by the embryo to support its growth. Using GeLC-MS/MS and shotgun strategies, we identified 91 nonredundant proteins delineating the chicken amniotic fluid proteome at day 11 of development, before egg white transfer. These proteins were essentially associated with the metabolism of nutrients, immune response and developmental processes. Forty-eight proteins were common to both chicken and human amniotic fluids, including serum albumin, apolipoprotein A1 and alpha-fetoprotein. We further investigated the effective role of chicken amniotic fluid in innate defense and revealed that it exhibits significant antibacterial activity at day 11 of development. This antibacterial potential is drastically enhanced after egg white transfer, presumably due to lysozyme, avian beta-defensin 11, vitelline membrane outer layer protein 1, and beta-microseminoprotein-like as the most likely antibacterial candidates. Interestingly, several proteins recovered in the chicken amniotic fluid prior and after egg white transfer are uniquely found in birds (ovalbumin and related proteins X and Y, avian beta-defensin 11) or oviparous species (vitellogenins 1 and 2, riboflavin-binding protein). This study provides an integrative overview of the chicken amniotic fluid proteome and opens stimulating perspectives in deciphering the role of avian egg-specific proteins in embryonic development, including innate immunity. These proteins may constitute valuable biomarkers for poultry production to detect hazardous situations (stress, infection, etc.), that may negatively affect the development of the chicken embryo.


Assuntos
Líquido Amniótico/metabolismo , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Animais , Antibacterianos/metabolismo , Clara de Ovo , Desenvolvimento Embrionário , Evolução Molecular , Ontologia Genética , Filogenia , Proteoma/metabolismo , Proteômica
3.
Sci Rep ; 6: 27974, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27294500

RESUMO

The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics.


Assuntos
Peptídeos Catiônicos Antimicrobianos/análise , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/farmacologia , Proteínas de Transporte/análise , Proteínas de Transporte/farmacologia , Clara de Ovo/química , Animais , Galinhas , Cromatografia de Afinidade , Listeria monocytogenes/efeitos dos fármacos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Proteômica , Salmonella enterica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...