Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 758
Filtrar
1.
EFSA J ; 22(5): e8773, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720962

RESUMO

The food enzyme glucan 1,4-α-glucosidase (4-α-d-glucan glucohydrolase; EC 3.2.1.3) is produced with the non-genetically modified Rhizopus arrhizus strain AE-G by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in one food manufacturing process. Subsequently, the applicant requested to extend its use to nine additional processes and revised the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme for uses in a total of 10 food manufacturing processes. As the food enzyme-total organic solids (TOS) is removed from the final foods in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining eight processes. Dietary exposure was up to 0.424 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level previously reported (1868 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 4406. Based on the data provided for the previous evaluation and the margin of exposure revised in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

2.
EFSA J ; 22(5): e8772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720964

RESUMO

The food enzyme ß-amylase (4-α-d-glucan maltohydrolase, EC 3.2.1.2) is produced with the non-genetically modified Bacillus flexus strain AE-BAF by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in three food manufacturing processes. Subsequently, the applicant requested to extend its use to four additional processes and revised the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme for use in a total of seven food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from the final foods in one food manufacturing process, the dietary exposure to the food enzyme-TOS was estimated only for the remaining six processes. The dietary exposure was estimated to be up to 0.247 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the dietary exposure revised in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

3.
EFSA J ; 22(5): e8779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741669

RESUMO

The food enzyme with two declared activities, bacillolysin (EC 3.4.24.28) and subtilisin (EC 3.4.21.62), is produced with the non-genetically modified Bacillus amyloliquefaciens strain AR-383 by AB Enzymes GmbH. The food enzyme is intended to be used in nine food manufacturing processes. Since residual amounts of total organic solids (TOS) are removed in the production of distilled alcohol, dietary exposure was calculated only for the remaining eight food manufacturing processes. Exposure was estimated to be up to 1.958 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the qualified presumption of safety approach to safety assessment and no issues of concern arising from the production process of the food enzyme were identified, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made, and 30 matches were found, including one food allergen (melon). The Panel considered that, under the intended conditions of use, the risk of allergic reactions by dietary exposure to this food enzyme cannot be excluded, but for individuals sensitised to melon, this would not exceed the risk of consuming melon. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

4.
EFSA J ; 22(5): e8801, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38764477

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of a tincture from the leaves of Eucalyptus globulus Labill. (eucalyptus tincture) when used as a sensory additive for all animal species. The product is a ■■■■■ solution, with a dry matter content of ~ 1.86%, which contains on average 0.454% phenolic acids and flavonoids (of which 0.280% was gallic acid), 0.0030% 1,8-cineole and 0.00012% methyleugenol. In the absence of analytical data on the occurrence of mono- or diformylated adducts of acylphloroglucinols with terpenes in the tincture and in the absence of toxicity data, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) could not conclude on the use of eucalyptus tincture for long-living and reproductive animals. For short-living animals (species for fattening), the additive was considered of no concern at 4 mg/kg complete feed for chickens for fattening, 5 mg/kg for turkeys for fattening, 6 mg/kg for piglets and rabbits for meat production, 7 mg/kg for pigs for fattening, 16 mg/kg for veal calves (milk replacer), 14 mg/kg for cattle for fattening, sheep/goats and horses for fattening, and 15 mg/kg for salmonids. These levels were extrapolated to physiologically related minor species. No safety concern would arise for the consumer from the use of eucalyptus tincture up to the levels in feed considered of no concern. Eucalyptus tincture should be considered as irritant to skin and eyes, and as a dermal and respiratory sensitiser. The use of eucalyptus tincture as a flavour in animal feed was not expected to pose a risk for the environment. Since the leaves of E. globulus and their preparations were recognised to flavour food and their function in feed would be essentially the same, no demonstration of efficacy was considered necessary.

5.
EFSA J ; 22(5): e8778, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38764476

RESUMO

The food enzyme laccase (benzenediol:oxygen oxidoreductase; EC 1.10.3.2) is produced with the non-genetically modified Trametes hirsuta strain AE-OR by Amano Enzyme Inc. The food enzyme is free from viable cells of the production organism. It is intended to be used in six food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.026 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 862 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 33,154. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

6.
EFSA J ; 22(5): e8798, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38764478

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of tinctures obtained from the dried leaves of Ginkgo biloba L. (ginkgo tinctures) when used as sensory additives. The tinctures are water/ethanol solutions with a dry matter content of 5.7% (tincture A) and 3.0% (tincture B). The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the additives under assessment are safe for the target species at the following concentrations in complete feed: (i) ginkgo tincture A at 240 mg/kg for horses and 750 mg/kg for dogs; (ii) ginkgo tincture B at 600 mg/kg for horses and 50 mg/kg for all other animal species. No safety concern would arise for the consumer from the use of ginkgo tinctures up to the maximum proposed use level in feed for the target species. The tinctures should be considered as irritants to skin and eyes, and as dermal and respiratory sensitisers. The use of ginkgo tinctures at the proposed use levels in feed for the target species is not considered to be a risk to the environment. While the available data indicate that Ginkgo preparations have a distinctive flavour profile, there is no evidence that ginkgo tinctures would impart flavour to a food or feed matrix. Therefore, the FEEDAP Panel cannot conclude on the efficacy of the additives.

7.
EFSA J ; 22(5): e8793, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774115

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of Macleaya cordata (Willd.) R. Br. extract and leaves (Sangrovit® Extra) as a zootechnical feed additive for suckling and weaned piglets and other growing Suidae. The additive is standardised to contain a concentration of the sum of the four alkaloids sanguinarine, chelerythrine, protopine and allocryptopine of 1.25%, with 0.5% sanguinarine. Owing to the presence of the DNA intercalators sanguinarine and chelerythrine, a concern for genotoxicity was identified. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) had no safety concerns for the target species when the additive is used at the recommended level of 0.750 mg sanguinarine/kg complete feed for suckling and weaned piglets and other growing Suidae. Since in all consumer categories the exposure to sanguinarine and chelerythrine via the use of Sangrovit® Extra exceeds the threshold of toxicological concern of 0.0025 µg/kg bw per day for DNA reactive mutagens and/or carcinogens, the FEEDAP Panel could not conclude on the safety for the consumers. The additive was shown to be irritant to the eyes but not irritant to skin or a skin sensitiser. The FEEDAP Panel could not exclude the potential of the additive to be a respiratory sensitiser. When handling the additive, exposure of unprotected users to sanguinarine and chelerythrine may occur. Therefore, to reduce the risk, the exposure of users should be reduced. The use of Sangrovit® Extra as a feed additive under the proposed conditions of use was considered safe for the environment. The additive Sangrovit® Extra had the potential to be efficacious in improving performance of weaned piglets at 0.600 mg sanguinarine/kg complete feed. This conclusion was extended to suckling piglets and extrapolated to other growing Suidae.

8.
EFSA J ; 22(5): e8775, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751502

RESUMO

The food enzyme sucrose phosphorylase (sucrose: phosphate α- d-glucosyltransferase; EC 2.4.1.7) is produced with the genetically modified Escherichia coli strain LE1B109-pPB129 by c-LEcta GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme was free from viable cells of the production organism. It is intended to be used in combination with a cellobiose phosphorylase in the production of the specialty carbohydrate cellobiose. Since residual amounts of food enzyme-total organic solids are removed by the downstream purification steps, the Panel considered that toxicological studies other than assessment of allergenicity were unnecessary and a dietary exposure was not estimated. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

9.
EFSA J ; 22(5): e8780, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751507

RESUMO

The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified microorganism Bacillus licheniformis strain AE-TA by Amano Enzyme Inc. The food enzyme is intended to be used in eight food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in two food manufacturing processes, dietary exposure was calculated only for the remaining six processes. It was estimated to be up to 0.056 mg TOS/kg body weight per day in European populations. The production strain of the food enzyme fulfils the requirements for the qualified presumption of safety approach to safety assessment. Consequently, in the absence of other concerns, the Panel considered that toxicological studies were not needed for the safety assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and two matches with respiratory allergens were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded (except for the production of distilled alcohol), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

10.
EFSA J ; 22(5): e8781, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711806

RESUMO

The food enzyme with phospholipase A1 (phosphatidycholine 1-acylhydrolase, EC 3.1.1.32) and lysophospholipase (2-lysophosphatidylcholine acylhydrolase, EC 3.1.1.5) activities is produced with the genetically modified Aspergillus niger strain PLN by DSM. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used for the production of refined edible fats and oils by degumming. Since residual amounts of total organic solids are removed during this process, dietary exposure was not calculated and toxicological studies were considered unnecessary for the assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

11.
EFSA J ; 22(5): e8791, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756347

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of a tincture from the dried flower bud of Syzygium aromaticum (L.) Merr. & L.M. Perry (clove tincture) when used as a sensory additive in feed and water for drinking for all animal species. The product is a ■■■■■) solution, with a dry matter content of ~ 1.66%. The product contains on average 0.511% phenolic acids (of which 0.0344% were flavonoids), 0.039% eugenol, 0.00019% methyleugenol and 0.00008% estragole. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the use of clove tincture is very unlikely to be of safety concern for the target species up to the maximum proposed use level of 50 mg clove tincture/kg complete feed for all animal species, except for horses, for which the proposed use level is 200 mg/kg complete feed. The FEEDAP Panel considers that the use in water for drinking alone or in combination with use in feed should not exceed the daily amount that is considered very unlikely to be of safety concern when consumed via feed alone. No safety concern would arise for the consumer and the environment from the use of clove tincture up to the maximum proposed use levels in feed. The additive under assessment should be considered as irritant to skin and eyes, and as a dermal and respiratory sensitiser. When handling the additive, exposure of unprotected users to methyleugenol and estragole may occur. Therefore, to reduce the risk, the exposure of the users should be minimised. Since the flower buds of S. aromaticum and their preparations were recognised to flavour food and their function in feed would be essentially the same, no demonstration of efficacy was considered necessary.

12.
EFSA J ; 22(5): e8770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756348

RESUMO

Bacillus paralicheniformis, a species known to produce the antimicrobial bacitracin, could be misidentified as Bacillus licheniformis, depending on the identification method used. For this reason, the European Commission requested EFSA to review the taxonomic identification of formerly assessed B. licheniformis production strains. Following this request, EFSA retrieved the raw data from 27 technical dossiers submitted and found that the taxonomic identification was established by 16S rRNA gene analyses for 15 strains and by whole genome sequence analysis for 12 strains. As a conclusion, only these 12 strains could be unambiguously identified as B. licheniformis.

13.
EFSA J ; 22(5): e8799, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756350

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of an essential oil obtained from the wood of Juniperus deppeana Steud. (cedarwood Texas oil), when used as a sensory additive for all animal species. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the essential oil under assessment is safe up to the maximum proposed use levels in complete feed of 15 mg/kg for veal calves (milk replacer), cattle for fattening, sheep, goats, horses, dogs, salmonids and ornamental fish. For the other species, the calculated safe concentrations in complete feed were 5 mg/kg for chickens for fattening, 8 mg/kg for laying hens, 7 mg/kg for turkeys for fattening, 10 mg/kg for piglets, 12 mg/kg for pigs for fattening, 14 mg/kg for sows and dairy cows, 8.5 mg/kg for rabbits and 4 mg/kg for cats. These conclusions were extrapolated to other physiologically related species. For any other species, the additive was considered safe at 4 mg/kg complete feed. The use of cedarwood Texas oil in water for drinking was considered safe provided that the total daily intake of the additive does not exceed the daily amount that is considered safe when consumed via feed. No concerns for consumers and the environment were identified following the use of the additive up to the maximum proposed use level in feed. The additive under assessment should be considered as irritant to skin and eyes, and as a skin and respiratory sensitiser. Since the individual components of cedarwood Texas oil are recognised to flavour food and their function in feed would be essentially the same as that in food, no further demonstration of efficacy was considered necessary.

14.
EFSA J ; 22(4): e8694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576538

RESUMO

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the substance 'phosphorous acid, triphenyl ester, polymer with 1,4-cyclohexanedimethanol and polypropylene glycol, C10-16 alkyl esters', when used as an additive in all types of polyolefins. The substance is a polymer containing ≤ 13% w/w of a low molecular weight fraction (LMWF, < 1000 Da). A polyethylene sample with 0.15% w/w of the substance was used in a comprehensive set of migration tests with food simulants. The specific migration was up to 0.014 and 0.023 mg/kg in 4% acetic acid and 10% ethanol, respectively. Migration into olive oil was estimated by the Panel to be up to 5.3 mg/kg under worst-case conditions of use. The migrating LMWF species were comprehensively identified. Those without phosphorous were either without alerts for genotoxicity or listed in Regulation (EU) 10/2011 with worst-case migrations well below their respective specific migration limits. Toxicological studies were performed using phosphite and phosphate versions of the substance enriched in its LMWF. The substance does not raise a concern for genotoxicity. From a repeated dose 90-day oral toxicity study in rats with a 50:50 phosphite:phosphate blend, the Panel identified a NOAEL of 250 mg/kg bw per day for each component of the blend. No delayed neurotoxicity in hens was observed. The CEP Panel concluded that the substance does not raise a safety concern for the consumer if its LMWF is not higher than 13% w/w, if it is used at up to 0.15% w/w in polyolefin materials and articles intended for contact with all food types, except for infant formula and human milk, for long-term storage at room temperature and below, after hot-fill and/or heating up to 100°C for up to 2 h, and if its migration does not exceed 5 mg/kg food.

15.
EFSA J ; 22(4): e8698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585218

RESUMO

The food enzyme 4-α-glucanotransferase (1,4-α-d-glucan:1,4-α-d-glucan 4-α-d-glycosyltransferase, EC 2.4.1.25) is produced with the non-genetically modified Aeribacillus pallidus strain AE-SAS by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in two food manufacturing processes. Subsequently, the applicant requested to extend its use to two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme for use in a total of four food manufacturing processes. As the food enzyme-total organic solids (TOS) is removed from the final foods in one food manufacturing process, the dietary exposure to the food enzyme-TOS was estimated only for the remaining three processes. Dietary exposure was up to 0.040 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level reported in the previous opinion (900 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 22,500. Based on the data provided for the previous evaluation and the revised margin of exposure, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

16.
EFSA J ; 22(4): e8701, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585214

RESUMO

The food enzyme endo-polygalacturonase ((1 → 4)-α-d-galacturonan glycanohydrolase EC 3.2.1.15) is produced with the genetically modified Aspergillus oryzae strain AR-183 by AB ENZYMES GmbH. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in five food manufacturing processes. Subsequently, the applicant requested to extend its use to two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme for use in a total of seven food manufacturing processes. As the food enzyme-total organic solids (TOS) is removed from the final foods in three food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining four processes. Dietary exposure was up to 0.087 mg TOS/kg body weight (bw) per day in European populations. When combined with the NOAEL reported in the previous opinion (1000 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 11,494. Based on the data provided for the previous evaluation and the revised margin of exposure, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

17.
EFSA J ; 22(4): e8700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585219

RESUMO

The food enzyme pectinesterase (pectin pectylhydrolase; EC 3.1.1.11) is produced with the genetically modified Aspergillus oryzae strain AR-962 by AB Enzymes GmbH. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in five food manufacturing processes. Subsequently, the applicant requested to extend its use to two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme for uses in a total of seven food manufacturing processes. As the food enzyme-total organic solids (TOS) is removed from the final foods in three food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining four processes. Dietary exposure was up to 0.575 mg TOS/kg body weight (bw) per day in European populations. When combined with the NOAEL reported in the previous opinion (1000 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 1739. Based on the data provided for the previous evaluation and the revised margin of exposure, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

18.
EFSA J ; 22(4): e8721, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585220

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the proposed modification of the terms of the authorisation regarding the maximum inclusion level of a feed additive consisting of 4-hydroxy-2,5-dimethylfuran-3(2H)-one for cats and dogs. 4-Hydroxy-2,5-dimethylfuran-3(2H)-one is currently authorised for use as a sensory additive (functional group: flavouring compounds) for cats and dogs at a recommended maximum content of 5 mg/kg complete feed. The applicant is requesting a modification of the authorisation to increase the recommended maximum content of the additive up to 25 mg/kg complete feed for cats and dogs. Based on the toxicological data available, the FEEDAP Panel concludes that 4-hydroxy-2,5-dimethylfuran-3(2H)-one is safe for dogs at 25 mg/kg feed and for cats at 18 mg/kg feed. The additive is irritant to skin, eyes and to the respiratory tract and is a skin sensitiser. No further demonstration of efficacy is necessary.

19.
EFSA J ; 22(4): e8723, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585217

RESUMO

The food enzyme subtilisin (EC 3.4.21.62) is produced with the genetically modified Bacillus licheniformis strain NZYM-CB by Novozymes A/S. The genetic modifications do not give rise to safety concerns. The food enzyme is considered free from viable cells of the production organism and its DNA. It is intended to be used in six food manufacturing processes. The dietary exposure to the food enzyme-TOS was estimated to be up to 0.722 mg TOS/kg body weight (bw) per day in European populations. The production strain of the food enzyme fulfils the requirements for the qualified presumption of safety approach to safety assessment. As no other concerns arising from the manufacturing process were identified, the Panel considered that toxicological tests were not required for the assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and 20 matches were found, including two food allergens (melon and pomegranate). The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, particularly in individuals sensitised to melon and pomegranate, but would not exceed the risk from consumption of melon or pomegranate. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

20.
EFSA J ; 22(4): e8702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591024

RESUMO

This assessment addresses a food enzyme preparation consisting of the immobilised non-viable cells of the non-genetically modified bacterium identified by the applicant (Samyang Corporation) as Microbacterium foliorum strain SYG27B. This strain produces the enzyme D-psicose 3-epimerase (EC 5.1.3.30). The food enzyme preparation is used for the isomerisation of fructose to produce the speciality carbohydrate D-allulose (synonym D-psicose). Since the hazard identification and characterisation could not be made and the identity of the production organism could not be established, the Panel was unable to complete the assessment of this food enzyme preparation containing D-psicose 3-epimerase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...