Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Front Cell Neurosci ; 18: 1321682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469353

RESUMO

Mature oligodendrocytes (OLG) are the myelin-forming cells of the central nervous system. Recent work has shown a dynamic role for these cells in the plasticity of neural circuits, leading to a renewed interest in voltage-sensitive currents in OLG. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and their respective current (Ih) were recently identified in mature OLG and shown to play a role in regulating myelin length. Here we provide a biochemical and electrophysiological characterization of HCN channels in cells of the oligodendrocyte lineage. We observed that mice with a nonsense mutation in the Hcn2 gene (Hcn2ap/ap) have less white matter than their wild type counterparts with fewer OLG and fewer oligodendrocyte progenitor cells (OPCs). Hcn2ap/ap mice have severe motor impairments, although these deficits were not observed in mice with HCN2 conditionally eliminated only in oligodendrocytes (Cnpcre/+; Hcn2F/F). However, Cnpcre/+; Hcn2F/F mice develop motor impairments more rapidly in response to experimental autoimmune encephalomyelitis (EAE). We conclude that HCN2 channels in OLG may play a role in regulating metabolism.

2.
Biol Chem ; 404(4): 291-302, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36852869

RESUMO

Tonic current through hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels is influencing neuronal firing properties and channel function is strongly influenced by the brain-specific auxiliary subunit tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Since Kv1.2 channels and TRIP8b were also suggested to interact, we assessed brain Kv1.2 mRNA and protein expression as well as the reduction of K+ outward currents by Kv1.2-blocking compounds (Psora-4; tityustoxin-Kα, TsTX-Kα) in different brain areas of TRIP8b-deficient (TRIP8b -/- ) compared to wildtype (WT) mice. We found that transcription levels of Kv1.2 channels were not different between genotypes. Furthermore, Kv1.2 current amplitude was not affected upon co-expression with TRIP8b in oocytes. However, Kv1.2 immunofluorescence was stronger in dendritic areas of cortical and hippocampal neurons. Furthermore, the peak net outward current was increased and the inactivation of the Psora-4-sensitive current component was less pronounced in cortical neurons in TRIP8b -/- mice. In current clamp recordings, application of TsTX increased the excitability of thalamocortical (TC) neurons with increased number of elicited action potentials upon step depolarization. We conclude that TRIP8b may not preferentially influence the amplitude of current through Kv1.2 channels but seems to affect current inactivation and channel localization. In TRIP8b -/- a compensatory upregulation of other Kv channels was observed.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Neurônios , Camundongos , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Oócitos
3.
J Biol Chem ; 298(7): 102069, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623388

RESUMO

Major depressive disorder is a critical public health problem with a lifetime prevalence of nearly 17% in the United States. One potential therapeutic target is the interaction between hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and an auxiliary subunit of the channel named tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). HCN channels regulate neuronal excitability in the mammalian hippocampus, and recent work has established that antagonizing HCN function rescues cognitive impairment caused by chronic stress. Here, we utilize a high-throughput virtual screen to find small molecules capable of disrupting the TRIP8b-HCN interaction. We found that the hit compound NUCC-0200590 disrupts the TRIP8b-HCN interaction in vitro and in vivo. These results provide a compelling strategy for developing new small molecules capable of disrupting the TRIP8b-HCN interaction.


Assuntos
Transtorno Depressivo Maior , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo
4.
Cereb Cortex ; 32(20): 4397-4421, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-35076711

RESUMO

A consensus is yet to be reached regarding the exact prevalence of epileptic seizures or epilepsy in multiple sclerosis (MS). In addition, the underlying pathophysiological basis of the reciprocal interaction among neuroinflammation, demyelination, and epilepsy remains unclear. Therefore, a better understanding of cellular and network mechanisms linking these pathologies is needed. Cuprizone-induced general demyelination in rodents is a valuable model for studying MS pathologies. Here, we studied the relationship among epileptic activity, loss of myelin, and pro-inflammatory cytokines by inducing acute, generalized demyelination in a genetic mouse model of human absence epilepsy, C3H/HeJ mice. Both cellular and network mechanisms were studied using in vivo and in vitro electrophysiological techniques. We found that acute, generalized demyelination in C3H/HeJ mice resulted in a lower number of spike-wave discharges, increased cortical theta oscillations, and reduction of slow rhythmic intrathalamic burst activity. In addition, generalized demyelination resulted in a significant reduction in the amplitude of the hyperpolarization-activated inward current (Ih) in thalamic relay cells, which was accompanied by lower surface expression of hyperpolarization-activated, cyclic nucleotide-gated channels, and the phosphorylated form of TRIP8b (pS237-TRIP8b). We suggest that demyelination-related changes in thalamic Ih may be one of the factors defining the prevalence of seizures in MS.


Assuntos
Doenças Desmielinizantes , Epilepsia Tipo Ausência , Animais , Córtex Cerebral/fisiologia , Cuprizona/metabolismo , Cuprizona/toxicidade , Citocinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Neurônios/fisiologia , Nucleotídeos Cíclicos/metabolismo , Convulsões , Tálamo/fisiologia
5.
Sci Transl Med ; 13(621): eabl4580, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34818058

RESUMO

Hyperpolarization-activated cyclic nucleotide­gated (HCN) channels regulate neuronal excitability and represent a possible therapeutic target for major depressive disorder (MDD). These channels are regulated by intracellular cyclic adenosine monophosphate (cAMP). However, the relationship between cAMP signaling and the influence of HCN channels on behavior remains opaque. In this study, we investigated the role of hippocampal cAMP signaling on behavior using chemogenetic technology in mice. Acutely increasing cAMP limited spatial memory and motivated behavior by increasing HCN function. However, chronically elevated cAMP limited surface trafficking of HCN channels by disrupting the interaction between HCN and tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), an auxiliary subunit. Chronically increased cAMP in the dorsal hippocampus was also sufficient to rescue cognitive deficits induced by chronic stress in mice. These results reveal a behaviorally relevant form of regulation of HCN channel surface expression that has potential as a therapeutic target for cognitive deficits related to chronic stress.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Transtorno Depressivo Maior , Animais , Comportamento Animal , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos
6.
Neurobiol Aging ; 106: 207-222, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303222

RESUMO

The hippocampus is vulnerable to deterioration in Alzheimer's disease (AD). It is, however, a heterogeneous structure, which may contribute to the differential volumetric changes along its septotemporal axis during AD progression. Here, we investigated amyloid plaque deposition along the dorsoventral axis in two strains of transgenic AD (ADTg) mouse models. We also used patch-clamp physiology in these mice to probe for functional consequences of AD pathogenesis in ventral hippocampus, which we found bears significantly higher plaque burden in the aged ADTg group compared to corresponding dorsal regions. Despite dorsoventral differences in amyloid load, ventral CA1 pyramidal neurons of aged ADTg mice exhibited subthreshold physiological changes similar to those previously reported in dorsal neurons, indicative of an HCN channelopathy, but lacked exacerbated suprathreshold accommodation. Additionally, HCN channel function could be rescued by pharmacological manipulation of the endoplasmic reticulum. These observations suggest that an AD-linked HCN channelopathy emerges in both dorsal and ventral CA1 pyramidal neurons, but that the former encounter an additional integrative obstacle in the form of reduced intrinsic excitability.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Placa Amiloide/metabolismo , Células Piramidais/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Progressão da Doença , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Camundongos Transgênicos , Tamanho do Órgão , Técnicas de Patch-Clamp
7.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946275

RESUMO

The tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b/PEX5R) is an interaction partner and auxiliary subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are key for rhythm generation in the brain and in the heart. Since TRIP8b is expressed in central neurons but not in cardiomyocytes, the TRIP8b-HCN interaction has been studied intensely in the brain, but is deemed irrelevant in the cardiac conduction system. Still, to date, TRIP8b has not been studied in the intrinsic cardiac nervous system (ICNS), a neuronal network located within epicardial fat pads. In vitro electrophysiological studies revealed that TRIP8b-deficient mouse hearts exhibit increased atrial refractory and atrioventricular nodal refractory periods, compared to hearts of wild-type littermates. Meanwhile, heart rate, sino-nodal recovery time, and ventricular refractory period did not differ between genotypes. Trip8b mRNA was detected in the ICNS by quantitative polymerase chain reaction. RNAscope in situ hybridization confirmed Trip8b localization in neuronal somata and nerve fibers. Additionally, we found a very low amount of mRNAs in the sinus node and atrioventricular node, most likely attributable to the delicate fibers innervating the conduction system. In contrast, TRIP8b protein was not detectable. Our data suggest that TRIP8b in the ICNS may play a role in the modulation of atrial electrophysiology beyond HCN-mediated sino-nodal control of the heart.


Assuntos
Coração/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteínas de Membrana/metabolismo , Peroxinas/metabolismo , Animais , Deleção de Genes , Expressão Gênica , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Peroxinas/genética , Mapas de Interação de Proteínas , RNA Mensageiro/genética
8.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593893

RESUMO

Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others' lifespans outlast their "mindspans."


Assuntos
Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/patologia , Envelhecimento Cognitivo , Células Piramidais/patologia , Sinapses/patologia , Animais , Masculino , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344
9.
Channels (Austin) ; 14(1): 110-122, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32189562

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed throughout the mammalian central nervous system (CNS). These channels have been implicated in a wide range of diseases, including Major Depressive Disorder and multiple subtypes of epilepsy. The diversity of functions that HCN channels perform is in part attributable to differences in their subcellular localization. To facilitate a broad range of subcellular distributions, HCN channels are bound by auxiliary subunits that regulate surface trafficking and channel function. One of the best studied auxiliary subunits is tetratricopeptide-repeat containing, Rab8b-interacting protein (TRIP8b). TRIP8b is an extensively alternatively spliced protein whose only known function is to regulate HCN channels. TRIP8b binds to HCN pore-forming subunits at multiple interaction sites that differentially regulate HCN channel function and subcellular distribution. In this review, we summarize what is currently known about the structure and function of TRIP8b isoforms with an emphasis on the role of this auxiliary subunit in health and disease.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Modelos Biológicos , Fosforilação , Receptores Citoplasmáticos e Nucleares/genética
10.
Nat Neurosci ; 23(2): 239-251, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932764

RESUMO

The entorhinal cortex contains neurons that represent self-location, including grid cells that fire in periodic locations and velocity signals that encode running speed and head direction. Although the size and shape of the environment influence grid patterns, whether entorhinal velocity signals are equally influenced or provide a universal metric for self-motion across environments remains unknown. Here we report that speed cells rescale after changes to the size and shape of the environment. Moreover, head direction cells reorganize in an experience-dependent manner to align with the axis of environmental change. A knockout mouse model allows dissociation of the coordination between cell types, with grid and speed cells, but not head direction cells, responding in concert to environmental change. These results point to malleability in the coding features of multiple entorhinal cell types and have implications for which cell types contribute to the velocity signal used by computational models of grid cells.


Assuntos
Córtex Entorrinal/fisiologia , Células de Grade/fisiologia , Modelos Neurológicos , Percepção Espacial/fisiologia , Navegação Espacial/fisiologia , Animais , Simulação por Computador , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Epilepsy Curr ; 19(6): 408-410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31495198

RESUMO

[Box: see text].

12.
J Biol Chem ; 294(43): 15743-15758, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31492750

RESUMO

Temporal lobe epilepsy (TLE) is a prevalent neurological disorder with many patients experiencing poor seizure control with existing anti-epileptic drugs. Thus, novel insights into the mechanisms of epileptogenesis and identification of new drug targets can be transformative. Changes in ion channel function have been shown to play a role in generating the aberrant neuronal activity observed in TLE. Previous work demonstrates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are mislocalized within CA1 pyramidal cells in a rodent model of TLE. The subcellular distribution of HCN channels is regulated by an auxiliary subunit, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), and disruption of this interaction correlates with channel mislocalization. However, the molecular mechanisms responsible for HCN channel dysregulation in TLE are unclear. Here we investigated whether changes in TRIP8b phosphorylation are sufficient to alter HCN channel function. We identified a phosphorylation site at residue Ser237 of TRIP8b that enhances binding to HCN channels and influences channel gating by altering the affinity of TRIP8b for the HCN cytoplasmic domain. Using a phosphospecific antibody, we demonstrate that TRIP8b phosphorylated at Ser237 is enriched in CA1 distal dendrites and that phosphorylation is reduced in the kainic acid model of TLE. Overall, our findings indicate that the TRIP8b-HCN interaction can be modulated by changes in phosphorylation and suggest that loss of TRIP8b phosphorylation may affect HCN channel properties during epileptogenesis. These results highlight the potential of drugs targeting posttranslational modifications to restore TRIP8b phosphorylation to reduce excitability in TLE.


Assuntos
Epilepsia do Lobo Temporal/metabolismo , Proteínas de Membrana/metabolismo , Peroxinas/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dendritos/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico , Ácido Caínico , Proteínas de Membrana/química , Camundongos Endogâmicos C57BL , Peroxinas/química , Fosforilação , Fosfosserina/metabolismo , Subunidades Proteicas/química , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
13.
Epilepsy Curr ; 19(5): 339-340, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31409147

RESUMO

[Box: see text].

14.
Cerebellum ; 18(6): 1036-1063, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31124049

RESUMO

Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.


Assuntos
Encéfalo/diagnóstico por imagem , Consenso , Prova Pericial , Modelos Animais , Rede Nervosa/diagnóstico por imagem , Tremor/diagnóstico por imagem , Animais , Encéfalo/fisiopatologia , Drosophila , Prova Pericial/normas , Haplorrinos , Camundongos , Rede Nervosa/fisiopatologia , Ratos , Suínos , Tremor/fisiopatologia
15.
Epilepsy Curr ; 19(3): 182-183, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31035818

RESUMO

Srivastava PK, van Eyll J, Godard P, Mazzuferi M, Delahaye-Duriez A, Steenwinckel JV, et al. A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target. Nat Commun. 2018;9(1):3561. doi:10.1038/s41467-018-06008-4. The identification of drug targets is highly challenging, particularly for diseases of the brain. To address this problem, we developed and experimentally validated a general computational framework for drug target discovery that combines gene regulatory information with causal reasoning ("Causal Reasoning Analytical Framework for Target discovery"-CRAFT). Using a systems genetics approach and starting from gene expression data from the target tissue, CRAFT provides a predictive framework for identifying cell membrane receptors with a direction-specified influence over disease-related gene expression profiles. As proof of concept, we applied CRAFT to epilepsy and predicted the tyrosine kinase receptor Csf1R as a potential therapeutic target. The predicted effect of Csf1R blockade in attenuating epilepsy seizures was validated in 3 preclinical models of epilepsy. These results highlight CRAFT as a systems-level framework for target discovery and suggest Csf1R blockade as a novel therapeutic strategy in epilepsy. The CRAFT is applicable to disease settings other than epilepsy.

16.
Epilepsy Curr ; 19(2): 122-123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30955425

RESUMO

A Mild PUM1 Mutation Is Associated With Adult-Onset Ataxia, Whereas Haploinsufficiency Causes Developmental Delay and Seizures Gennarino VA, Palmer EE, McDonell LM, et al. Cell. 2018;172(5):924-936.e11. doi:10.1016/j.cell.2018.02.006. Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified 11 individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (PUM1-associated developmental disability, ataxia, and seizure). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (PUM1-related cerebellar ataxia). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.

17.
Epilepsy Curr ; 18(6): 396-397, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568560
18.
Sci Transl Med ; 10(459)2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232227

RESUMO

ß-Site APP (amyloid precursor protein) cleaving enzyme 1 (BACE1) is the ß-secretase enzyme that initiates production of the toxic amyloid-ß peptide that accumulates in the brains of patients with Alzheimer's disease (AD). Hence, BACE1 is a prime therapeutic target, and several BACE1 inhibitor drugs are currently being tested in clinical trials for AD. However, the safety of BACE1 inhibition is unclear. Germline BACE1 knockout mice have multiple neurological phenotypes, although these could arise from BACE1 deficiency during development. To address this question, we report that tamoxifen-inducible conditional BACE1 knockout mice in which the Bace1 gene was ablated in the adult largely lacked the phenotypes observed in germline BACE1 knockout mice. However, one BACE1-null phenotype was induced after Bace1 gene deletion in the adult mouse brain. This phenotype showed reduced length and disorganization of the hippocampal mossy fiber infrapyramidal bundle, the axonal pathway of dentate gyrus granule cells that is maintained by neurogenesis in the mouse brain. This defect in axonal organization correlated with reduced BACE1-mediated cleavage of the neural cell adhesion protein close homolog of L1 (CHL1), which has previously been associated with axon guidance. Although our results indicate that BACE1 inhibition in the adult mouse brain may avoid phenotypes associated with BACE1 deficiency during embryonic and postnatal development, they also suggest that BACE1 inhibitor drugs developed for treating AD may disrupt the organization of an axonal pathway in the hippocampus, an important structure for learning and memory.


Assuntos
Envelhecimento/metabolismo , Secretases da Proteína Precursora do Amiloide/deficiência , Ácido Aspártico Endopeptidases/deficiência , Axônios/metabolismo , Hipocampo/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Ácido Aspártico Endopeptidases/metabolismo , Cognição , Epilepsia/patologia , Epilepsia/fisiopatologia , Deleção de Genes , Hipocampo/patologia , Hipocampo/fisiopatologia , Potenciação de Longa Duração , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/metabolismo , Neurogênese , Fenótipo , Especificidade por Substrato
19.
20.
Nat Med ; 24(9): 1482, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29934536

RESUMO

In the version of this article originally published, a URL provided in the Methods section was incorrect. The URL had a solidus at the end but should have appeared as http://www.nature.com/authors/policies/image.html. The error has been corrected in the PDF and HTML versions of this article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...