Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotoxicology ; 99: 305-312, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979660

RESUMO

Methamphetamine (METH) is a psychostimulant with a very high addiction rate. Prolonged use of METH has been observed as one of the root causes of neurotoxicity. Melatonin (Mel) has been found to have a significant role in METH-induced neurotoxicity. This study aimed to investigate the restorative effect of Mel on behavioral flexibility in METH-induced cognitive deficits. Male Sprague-Dawley rats were randomly assigned to be intraperitoneally injected with saline (control) or Meth at 5 mg/kg for 7 consecutive days. Then, METH injection was withdrawn and rats in each group were subcutaneously injected with saline or Mel at 10 mg/kg for 14 consecutive days. The stereotypic behavioral test and attentional set-shifting task (ASST) were used to evaluate neurological functions and cognitive flexibility, respectively. Rats developed abnormal features of stereotyped behaviors and deficits in cognitive flexibility after 7 days of METH administration. However, post-treatment with Mel for 14 days after METH withdrawal dramatically ameliorated the neurological and cognitive deficits in METH-treated rats. Blood biomarkers indicated METH-induced systemic low-grade inflammation. Moreover, METH-induced endoplasmic reticulum (ER) stress in the prefrontal cortex was diminished by melatonin supplementation. These findings might reveal the therapeutic potential of Mel in METH toxicity-induced neurological and cognitive deficits.


Assuntos
Estimulantes do Sistema Nervoso Central , Melatonina , Metanfetamina , Síndromes Neurotóxicas , Ratos , Masculino , Animais , Metanfetamina/toxicidade , Melatonina/farmacologia , Melatonina/uso terapêutico , Ratos Sprague-Dawley , Estimulantes do Sistema Nervoso Central/toxicidade , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Cognição , Estresse do Retículo Endoplasmático
2.
J Proteome Res ; 22(10): 3348-3359, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37676068

RESUMO

Cognitive flexibility is a crucial ability in humans that can be affected by chronic methamphetamine (METH) addiction. The present study aimed to elucidate the mechanisms underlying cognitive impairment in mice chronically administered METH via an oral self-administration method. Further, the effect of melatonin treatment on recovery of METH-induced cognitive impairment was also investigated. Cognitive performance of the mice was assessed using an attentional set shift task (ASST), and possible underlying neurotoxic mechanisms were investigated by proteomic and western blot analysis of the prefrontal cortex (PFC). The results showed that mice-administered METH for 21 consecutive days exhibited poor cognitive performance compared to controls. Cognitive deficit in mice partly recovered after METH withdrawal. In addition, mice treated with melatonin during METH withdrawal showed a higher cognitive recovery than vehicle-treated METH withdrawal mice. Proteomic and western blot analysis revealed that METH self-administration increased neurotoxic markers, including disruption to the regulation of mitochondrial function, mitophagy, and decreased synaptic plasticity. Treatment with melatonin during withdrawal restored METH-induced mitochondria and synaptic impairments. These findings suggest that METH-induced neurotoxicity partly depends on mitochondrial dysfunction leading to autophagy-dependent cell death and that the recovery of neurological impairments may be enhanced by melatonin treatment during the withdrawal period.


Assuntos
Disfunção Cognitiva , Melatonina , Metanfetamina , Síndrome de Abstinência a Substâncias , Humanos , Camundongos , Animais , Metanfetamina/toxicidade , Melatonina/farmacologia , Proteômica , Disfunção Cognitiva/induzido quimicamente
3.
Am J Neurodegener Dis ; 12(1): 1-15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937109

RESUMO

The deficit in cognitive function is more concerning in methamphetamine (MA) users. The cognitive deficit was suspected to be the consequence of neuroinflammation-induced neurological dysregulation. In addition, activating the key enzyme in the tryptophan metabolic pathway by pro-inflammatory cytokines results in metabolite toxicity, further generating cognitive impairments. However, the evidence for the role of neuroinflammation and tryptophan metabolites involved in MA-induced cognitive deficit needs more conclusive study. OBJECTIVES: This retrospective study aimed to determine blood-inflammatory markers, tryptophan metabolite-related molecules, and cognitive function in MA abusers compared to healthy control (HC) participants. METHODS: The cognitive functions were evaluated using Stroop, Go/No-Go, One Back Task (OBT), and Wisconsin Card Sorting Test-64 (WCST-64). Blood samples were analyzed for complete blood count (CBC) analysis, serum inflammatory cytokines interleukin (IL)-6 and IL-18 and tryptophan metabolites. RESULTS: MA group exhibited poor cognitive performance in selective attention, inhibition, working memory, cognitive flexibility, concept formation and processing speed compared to HC. Reduction in red blood cell (RBC) components but induction in white blood cells (WBCs) and IL-6 were observed in MA abusers, which might indicate anemia of (systemic chronic low-grade) inflammation. In addition, the depletion of precursor in the tryptophan metabolic pathway, L-tryptophan was also observed in MA users, which might represent induction in tryptophan metabolites. CONCLUSION: These findings emphasize that blood biomarkers might be a surrogate marker to predict the role of neuroinflammation and abnormal tryptophan metabolite in MA-induced cognitive impairments.

4.
Neurosci Lett ; 789: 136870, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36100041

RESUMO

Several lines of evidence demonstrated the deleterious effect of methamphetamine (MA) on neurological and psychological functions. However, recent evidence on the neurological dysfunctions related to cognitive performance and psychosis in MA abusers needs to be elucidated. Therefore, the present study aimed to investigate the neurological functions using EEG measurement during cognitive tests in MA abusers with (MWP) or without (MWOP) psychosis compared to age-matched normal participants. The quantitative EEG (qEEG) was used to reveal the absolute power in 4 brain-wave frequencies including delta, theta, alpha, and beta waves. The results demonstrated poor attention in both groups of MA abusers. The deficit in mental flexibility was observed in MWP. The deficit in inhibition control and working memory were observed in MWOP. The greater delta, alpha and beta brain waves in multiple brain areas were observed in MWP during the resting (eyes-open) state. The greater alpha wave in multiple brain areas of MWP correlated with poor attention. The greater delta wave and lesser beta wave in the frontal brain correlated with poor inhibition and working memory in MWOP respectively. These findings demonstrated the applicability of EEG to determine neurological dysfunction related to cognitive impairments in MA abusers.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Disfunção Cognitiva , Metanfetamina , Transtornos Relacionados ao Uso de Anfetaminas/complicações , Cognição/fisiologia , Disfunção Cognitiva/induzido quimicamente , Eletroencefalografia/métodos , Humanos , Metanfetamina/efeitos adversos
5.
Food Chem Toxicol ; 157: 112610, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34653556

RESUMO

Methamphetamine (MA) is a psychostimulant and addictive substance. Long-term uses and toxic high doses of MA can induce neurotoxicity. The present study aimed to investigate the protective role of melatonin against MA toxicity-induced dysregulation of the neurotransmission related to cognitive function in rats. The adult male Sprague Dawley rats were intraperitoneally injected with 5 mg/kg MA for 7 consecutive days with or without subcutaneously injected with 10 mg/kg melatonin before MA injection. Some rats were injected with saline solution (control) or 10 mg/kg melatonin. MA administration induced reduction in total weight gain, neurotoxic features of stereotyped behaviors, deficits in cognitive flexibility, and significantly increased lipid peroxidation in the brain which diminished in melatonin pretreatment. The neurotoxic effect of MA on glutamate, dopamine and GABA transmitters was represented by the alteration of the GluR1, DARPP-32 and parvalbumin (PV) levels, respectively. A significant decrease in the GluR1 was observed in the prefrontal cortex of MA administration in rats. MA administration significantly increased the DARPP-32 but decreased PV in the striatum. Pretreatment of melatonin can abolish the neurotoxic effect of MA on neurotransmission dysregulation. These findings might reveal the antioxidative role of melatonin to restore neurotransmission dysregulation related to cognitive deficits in MA-induced neurotoxicity.


Assuntos
Transtornos Cognitivos/induzido quimicamente , Melatonina/farmacologia , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Atenção/efeitos dos fármacos , Western Blotting , Cognição/efeitos dos fármacos , Transtornos Cognitivos/prevenção & controle , Corpo Estriado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Metanfetamina/antagonistas & inibidores , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Comportamento Estereotipado/efeitos dos fármacos
6.
Plasmid ; 117: 102597, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34411655

RESUMO

Advances in neuroscience have relied on the development of techniques that examine neuronal cell activities. One major challenge involves the limitations in labeling and controlling neuronal activities relating to the cell's activation state. In this study, the modified human codon-optimized channelrhodopsin-2 photoreceptor hChR2(C128S) was integrated into function with inducible gene expression methods and materials: the Tet system and the highly efficient minimum promoter of Arc/Arg3.1. The system successfully expressed the target fusion gene exclusively in activated SH-SY5Y human neuroblastoma cells while maintaining the essential characteristics of ChR2. The expression of the channelrhodopsin construct was observed, while the expression duration was refined by treatment with doxycycline. The optogenetic construct here tested the application of the minimum Arc/Arg3.1 promoter, an advanced immediate-early gene promoter, for the expression of the channelrhodopsin gene. Along with its noninvasive nature, this expression system promises to serve dual functions as a cell activity indicator and cell actuator, creating the possibility for researchers to precisely label cells according to their activation state and control the activities of specific neuronal cell populations.


Assuntos
Neuroblastoma , Neurônios , Channelrhodopsins/metabolismo , Humanos , Neuroblastoma/genética , Plasmídeos , Regiões Promotoras Genéticas
7.
Neurochem Int ; 148: 105083, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052298

RESUMO

Chronic stress is a risk factor for the development of psychiatric illnesses through impairment of the ability to appropriately regulate physiological and behavioral responses, but the molecular events that lead to damage of hippocampal neurons remain unclear. The medicinal herb Spilanthes acmella Murr. has been used as a traditional medicine for various diseases and its extracts exhibit antioxidant activity. The present study explored the molecular signals of mitochondrial dynamics and investigated the beneficial effects of S. acmella Murr. An ethyl acetate extract of this plant was used to assess mitochondrial dynamics in response to chronic restraint stress (CRS) in male Sprague-Dawley rats. The results demonstrated that the S. acmella Murr. extract reduced the expression of mitochondrial fission protein but induced HSP60, MnSOD and ATPsynthase in the hippocampus of the CRS rats. In addition, S. acmella Murr. extract reversed depressive symptoms in the forced swim test. Our findings suggested that S. acmella Murr. extract provides a potential treatment of chronic stress, and that the mechanism is associated with the alleviation of neuronal injury and maintenance of mitochondrial function.


Assuntos
Asteraceae/química , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Estresse Psicológico/tratamento farmacológico , Animais , Antioxidantes , Comportamento Animal/efeitos dos fármacos , Chaperonina 60/biossíntese , Chaperonina 60/genética , Doença Crônica , Cognição/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/psicologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Plantas Medicinais , Ratos , Ratos Sprague-Dawley , Restrição Física
8.
Food Chem Toxicol ; 146: 111829, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33130240

RESUMO

Accumulation of aluminium (Al) in the brain is known to be a toxic insult that result in neurodegenerative diseases and melatonin is known to have neuroprotective role. The present study was designed to investigate the neuroprotective effects of melatonin for aluminium chloride (AlCl3)-induced neurotoxicity in rats. Twelve-week old male Wistar rats were orally received 175 mg/kg AlCl3 with or without 5 mg/kg melatonin intraperitoneal pretreatment. Group 3 intraperitoneally recieved 5 mg/kg melatonin and group 4 rats were orally treated with saline solution for 8 weeks. A series of behavioral tests, biochemical analysis and expression of AD-associated proteins in the brain were determined after 7 weeks of all treatments. Our results indicated that AlCl3 treatment tends to induce memory and cognitive impairment. However, melatonin treatment attenuated amyloid beta (Aß) (1-42) level by decreasing ß-secretase, augmented low-density lipoprotein receptor-related protein 1, and neprilysin protein expression. Moreover, AlCl3 -induced endoplasmic reticulum (ER) stress and oxidative stress was attenuated by melatonin supplementation. In conclusion, these findings demonstrate a protective role of melatonin against Aß peptide accumulation, ER stress and oxidative stress in the AlCl3 -treated AD model. Hence, the melatonin supplement might be an alternative way to alleviate the development of AD.


Assuntos
Cloreto de Alumínio/toxicidade , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Melatonina/farmacologia , Animais , Encéfalo/patologia , Humanos , Masculino , Memória/efeitos dos fármacos , Teste do Labirinto Aquático de Morris , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico
9.
J Neuroimmunol ; 344: 577232, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32311585

RESUMO

Neuron-Glial2 (NG2) expressing cells are described as the oligodendrocyte precursor cells in the brain. This study aimed to investigate the possible involvement of NG2 cells under the methamphetamine (METH)-induced neurotoxicity and neuroprotective capacity of melatonin. The results showed that the levels of NG2 in rat brain gradually increase from postnatal day 0 to postnatal day 8 and then the lower levels of NG2 are shown in adults. In adult rats, the levels of NG2 and COX-2 in the brain were significantly increased in lipopolysaccharide treatment. Pretreatment of 10 mg/kg melatonin prior to treating with METH was able to reduce an increase in the levels of NG2 and activation in astrocyte and microglia. These findings would extend the contribution of NG2 expressing cells in the adult brain during pathological conditions such as neuroinflammation.


Assuntos
Antígenos/biossíntese , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/toxicidade , Melatonina/farmacologia , Metanfetamina/toxicidade , Neuroglia/metabolismo , Proteoglicanas/biossíntese , Animais , Encéfalo/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Masculino , Melatonina/uso terapêutico , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley
10.
J Chem Neuroanat ; 106: 101793, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32348875

RESUMO

The interaction between the activation of protein phosphatase, calcineurin (CaN), and the dephosphorylation and nuclear translocation of nuclear factor of activated T-cells (NFAT), a transcriptional factor in the immune system, has attracted interest as a key factor responsible for the cell death process. In this study, the effects of melatonin on the interaction between CaN and NFAT signaling during oxidative stress-induced cell death were investigated. Human neuroblastoma SH-SY5Y cells were treated with the non-radical reactive oxygen species hydrogen peroxide (H2O2). Cells were treated with 200 µM H2O2 for the indicated time. Some H2O2-treated cells were pretreated with melatonin for 1 h. Control cells were treated with the same concentration of ethanol used to dilute melatonin. H2O2-induced cell death promoted increases in reactive oxygen species (ROS) production and the nuclear translocation of NFAT, which were related to increased levels the active, cleaved form of CaN (32.5 kDa). In addition, pretreatment of H2O2-treated cells with melatonin decreased cell death, ROS production, the levels of the active-cleaved form of CaN and the nuclear translocation of NFAT. Based on these findings, melatonin may exert its neuroprotective effects on oxidative damage-induced cell death by inhibiting CaN-activated the nuclear translocation of NFAT.


Assuntos
Antioxidantes/farmacologia , Calcineurina/metabolismo , Morte Celular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Melatonina/farmacologia , Fatores de Transcrição NFATC/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Biochem Biophys Res Commun ; 526(3): 574-579, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32247609

RESUMO

Genetic engineering for neuronal cell activity labeling and neuronal cell activity modulation are invaluable for elucidating the underlying characteristics of the brain and neurons. In this study, ferritin fusion protein (FFP) was combined with Tet expression construct under a modified immediate-early gene (IEG) Arc/Arg3.1 promoter so-called SARE-ArcMin. This expression system is a neuronal activity-dependent expression module for nano-ferritin, a radio/magnetic wave-sensitive protein well-accepted as a potential recombinant neuronal actuator. The system was characterized in transcriptional and translational levels in human neuroblastoma SH-SY5Y cells. The mRNA and protein expression levels of nano-ferritin were significant in the activated neurons suggesting that the activity dependent expression patterns of the ferritin also acted as a neuronal cell activation indicator. The system sufficed the need for precise neuronal cell activity specific expression and demonstrated a platform that suggested the use of the nano-ferritin for the study of neuronal cells.


Assuntos
Ferritinas/genética , Neurônios/metabolismo , Regiões Promotoras Genéticas , Expressão Gênica , Genes Precoces/genética , Engenharia Genética , Vetores Genéticos/genética , Humanos , Campos Magnéticos , Modelos Moleculares , Plasticidade Neuronal , Neurônios/citologia , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/genética
12.
Neurochem Res ; 44(7): 1567-1581, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30888577

RESUMO

Dexamethasone is an approved steroid for clinical use to activate or suppress cytokines, chemokines, inflammatory enzymes and adhesion molecules. It enters the brain, by-passing the blood brain barrier, and acts through genomic mechanisms. High levels of dexamethasone are able to induce neuronal cell loss, reduce neurogenesis and cause neuronal dysfunction. The exact mechanisms of steroid, especially the dexamethasone contribute to neuronal damage remain unclear. Therefore, the present study explored the mitochondrial dynamics underlying dexamethasone-induced toxicity of human neuroblastoma SH-SY5Y cells. Neuronal cells treatment with the dexamethasone resulted in a marked decrease in cell proliferation. Dexamethasone-induced neurotoxicity also caused upregulation of mitochondrial fusion and cleaved caspase-3 proteins expression. Mitochondria fusion was found in large proportions of dexamethasone-treated cells. These results suggest that dexamethasone-induced hyperfused mitochondrial structures are associated with a caspase-dependent death process in dexamethasone-induced neurotoxicity. These findings point to the high dosage of dexamethasone as being neurotoxic through impairment of mitochondrial dynamics.


Assuntos
Dexametasona/toxicidade , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
13.
J Neurochem ; 148(3): 413-425, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30152001

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by immune-mediated inflammation, which attacks the myelin sheath. MS pursues a relapsing and remitting course with varying intervals between symptoms. The main clinical pathological features include inflammation, myelin sheath destruction and plaque formation in the central nervous system (CNS). We previously reported that cystatin F (CysF) expression is induced in demyelinating lesions that are accompanied by active remyelination (referred to as shadow plaques) but is down-regulated in chronic demyelinated lesions (plaques) in the spinal cord of MS patients and in several murine models of demyelinating disease. CysF is a cathepsin protease inhibitor whose major target is cathepsin C (CatC), which is co-expressed in demyelinating regions in Plp4e/- mice, a model of chronic demyelination. Here, we report the time course of CatC and CysF expression and describe the symptoms in a mouse experimental autoimmune encephalomyelitis (EAE) model using CatC knockdown (KD) and CatC over-expression (OE) mice. In myelin oligodendrocyte glycoprotein (MOG)-EAE, CatC positive cells were found to infiltrate the CNS at an early stage prior to any clinical signs, in comparison to WT mice. CysF expression was not observed at this early stage, but appeared later within shadow plaques. CatC expression was found in chronic demyelinated lesions but was not associated with CysF expression, and CatCKD EAE mouse showed delayed demyelination. Whereas, CatCOE in microglia significantly increased severity of demyelination in the MOG-EAE model. Thus, these results demonstrate that CatC plays a major role in MOG-EAE.


Assuntos
Encéfalo/metabolismo , Catepsina C/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Degeneração Neural/metabolismo , Medula Espinal/metabolismo , Animais , Encéfalo/patologia , Cistatinas/metabolismo , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/imunologia , Degeneração Neural/patologia , Medula Espinal/patologia
14.
Neurochem Int ; 124: 82-93, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593827

RESUMO

Melatonin, a highly lipophilic molecule secreted by the pineal gland in the brain, plays a role in various biological functions. Previous studies reported that melatonin exerts its effect on mesenchymal stem cell (MSC) survival and differentiation into osteogenic- and adipogenic-lineage. However, the effect of melatonin in neurogenic differentiation in amniotic fluid (AF)-MSCs remains to be explored, thus we investigated the potential role of melatonin on dopaminergic neuron differentiation in AF-MSCs. The results showed that various concentrations of melatonin did not affect cell viability and proliferative effects of AF-MSCs. Increases in the levels of neuronal protein marker (ßIII-tubulin) and dopaminergic neuronal markers (tyrosine hydroxylase, TH and NURR1), but decrease in the level of glial fibrillary acidic protein (GFAP), were observed in melatonin-treated AF-MSCs. Melatonin induced alteration in differential expression patterns of mesenchymal stem cell antigens by reducing CD29, CD45, CD73, CD90 and CD105, but no changing CD34 expressing cells. AF-MSCs were sequentially induced in neurobasal medium containing standard inducing cocktails (ST: bFGF, SHH, FGF8, BDNF), 1 µM melatonin, or a combination of ST and melatonin. The levels of TUJ1, TH, MAP2, NURR1 and dopamine transporter (DAT) were significantly increased in all treated groups when compared with control-untreated cells. Pretreated AF-MSCs with non-selective MT1/MT2 receptors antagonist, luzindole and selective MT2 receptor antagonist, 4-P-PDOT diminished melatonin-induced increase in dopaminergic neuronal markers and phosphorylated ERK but did not diminish increase in phosphorylated CaMKII by melatonin. Pretreatment with mitogen-activated protein kinase (MEK) inhibitor, PD98059 and CaMKII inhibitor, KN-93 were able to abolish increase in the levels of dopaminergic markers in melatonin-treated AF-MSCs. These findings suggest that melatonin promotes dopaminergic neuronal differentiation of AF-MSCs possibly via the induction in ERK and CaMKII pathways through melatonin receptor-dependent and -independent mechanisms, respectively.


Assuntos
Líquido Amniótico/citologia , Líquido Amniótico/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Melatonina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Líquido Amniótico/fisiologia , Antioxidantes/farmacologia , Diferenciação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Neurônios Dopaminérgicos/fisiologia , Feminino , Humanos , Células-Tronco Mesenquimais/fisiologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Gravidez
15.
Neurotoxicology ; 67: 287-295, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29944913

RESUMO

Methamphetamine (METH) is an addictive stimulant drug that has many negative consequences, including toxic effects to the brain. Recently, the induction of inflammatory processes has been identified as a potential contributing factor to induce neuronal cell degeneration. It has been demonstrated that the expression of inflammatory agents, such as cyclooxygenase 2 (COX-2), depends on the activation of calcineurin (CaN) and nuclear factor of activated T-cells (NFAT). Moreover, the excessive elevation in cytosolic Ca2+ levels activates the cell death process, including calpain activation in neurons, which was diminished by the overexpression of the calpain inhibitor protein, calpastatin. However, it is unclear whether calpain mediates CaN-NFAT activation in the neurotoxic process. In the present study, we observed that the toxic high dose of METH-treated neuroblastoma SH-SY5Y cells significantly decreased cell viability but increased apoptotic cell death, the active cleaved form of calcineurin, the nuclear translocation of NFAT, and COX-2 levels. Nevertheless, these toxic effects were diminished in METH-treated calpastatin-overexpressing SH-SY5Y cells. These findings might emphasize the role of calpastatin against METH-induced toxicity by a mechanism related to calpain-dependent CaN-NFAT activation-induced COX-2 expression.


Assuntos
Calcineurina/biossíntese , Proteínas de Ligação ao Cálcio/biossíntese , Ciclo-Oxigenase 2/metabolismo , Metanfetamina/toxicidade , Fatores de Transcrição NFATC/metabolismo , Neuroblastoma/metabolismo , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Estimulantes do Sistema Nervoso Central/toxicidade , Relação Dose-Resposta a Droga , Expressão Gênica , Humanos , Neuroblastoma/genética
16.
J Physiol Sci ; 68(3): 261-268, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28205139

RESUMO

Growing evidence suggests that calcitonin gene-related peptide (CGRP) participates in trigeminal nociceptive responses. However, the role of CGRP in sensitization or desensitization of nociceptive transduction remains poorly understood. In this study, we sought to further investigate the CGRP-induced up-regulation of transient receptor potential vanilloid-1 (TRPV1) and the responses of trigeminal neurons to nociceptive stimuli. Rat trigeminal ganglion (TG) organ cultures and isolated trigeminal neurons were incubated with CGRP. An increase in TRPV1 levels was observed in CGRP-incubated TG organ cultures. CGRP potentiated capsaicin-induced increase in phosphorylated CaMKII levels in the TG organ cultures. The incubation of the trigeminal neurons with CGRP significantly increased the inward currents in response to capsaicin challenge, and this effect was inhibited by co-incubation with the CGRP receptor antagonist, BIBN4068BS or the inhibitor of protein kinase A, H-89. These findings reveal that CGRP acting on trigeminal neurons may play a significant role in facilitating cellular events that contribute to the peripheral sensitization of the TG in nociceptive transmission.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Neurônios/efeitos dos fármacos , Nociceptores/metabolismo , Canais de Cátion TRPV/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Isoquinolinas/farmacologia , Masculino , Neurônios/metabolismo , Ratos , Ratos Wistar , Sulfonamidas/farmacologia , Gânglio Trigeminal/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
J Exp Neurosci ; 11: 1179069517719237, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104429

RESUMO

Excessive intracellular calcium levels induce calpain activation, thereby triggering the cell death cascade. Several lines of evidence have demonstrated the neuroprotective role of the overexpression of calpain inhibitor, calpastatin. In this study, amphetamine-induced degeneration in the substantia nigra of rats was determined by evaluating the decrease in the levels of tyrosine hydroxylase phosphorylation. Amphetamine significantly decreased calpastatin levels but increased calpain levels. An induction in calpain activity was demonstrated by an increase in the formation of calpain spectrin breakdown products. The deleterious effects of amphetamine exposure were diminished in rats by pretreatment with melatonin. In addition, the effect of melatonin on calpastatin expression was investigated in human neuroblastoma SH-SY5Y cells. Melatonin was able to increase the calpastatin levels, and this effect could be blocked by luzindole, a melatonin receptor antagonist. These results demonstrate the neuroprotective ability of melatonin and its role in inducing calpastatin expression via a receptor-dependent pathway.

18.
Glia ; 65(6): 917-930, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28251676

RESUMO

In demyelinating diseases such as multiple sclerosis (MS), an imbalance between the demyelination and remyelination rates underlies the degenerative processes. Microglial activation is observed in demyelinating lesions; however, the molecular mechanism responsible for the homeostatic/environmental change remains elusive. We previously found that cystatin F (CysF), a cysteine protease inhibitor, is selectively expressed in microglia only in actively demyelinating/remyelinating lesions but ceases expression in chronic lesions, suggesting its role in remyelination. Here, we report the effects of manipulating the expression of CysF and cathepsin C (CatC), a key target of CysF, in a murine model of transgenic demyelinating disease, Plp4e/- . During the active remyelinating phase, both CysF knockdown (CysFKD) and microglial-selective CatC overexpression (CatCOE) showed a worsening of the demyelination in Plp4e/- transgenic mice. Conversely, during the chronic demyelinating phase, CatC knockdown (CatCKD) ameliorated the demyelination. Our results suggest that the balance between CatC and CysF expression controls the demyelination and remyelination process.


Assuntos
Encéfalo/metabolismo , Catepsina C/metabolismo , Cistatinas/metabolismo , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Animais , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Catepsina C/genética , Células Cultivadas , Cistatinas/genética , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Progressão da Doença , Marcação de Genes , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Microglia/patologia , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/patologia , RNA Mensageiro/metabolismo
19.
Mitochondrion ; 30: 151-61, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27453331

RESUMO

Calpain is an intracellular Ca(2+)-dependent protease, and the activation of calpain has been implicated in neurodegenerative diseases. Calpain activity can be regulated by calpastatin, an endogenous specific calpain inhibitor. Several lines of evidence have demonstrated a potential role of calpastatin in preventing calpain-mediated pathogenesis. Additionally, several studies have revealed that calpain activation and mitochondrial damage are involved in the cell death process; however, recent evidence has not clearly indicated a neuroprotective mechanism of calpastatin against calpain-dependent mitochondrial impairment in the process of neuronal cell death. Therefore, the purpose of this study was to investigate the potential ability of calpastatin to inhibit calpain activation and mitochondrial impairment in oxidative stress-induced neuron degeneration. Calpastatin was stably overexpressed in human neuroblastoma SH-SY5Y cells. In non-calpastatin overexpressing SH-SY5Y cells, hydrogen peroxide significantly decreased cell viability, superoxide dismutase activity, mitochondrial membrane potential, ATP production and mitochondrial fusion protein (Opa1) levels in the mitochondrial fraction but increased reactive oxygen species formation, calpain and calcineurin activation, mitochondrial fission protein (Fis1 and Drp1) levels in the mitochondrial fraction and apoptotic cells. Nevertheless, these toxic effects were abolished in hydrogen peroxide-treated calpastatin-overexpressing SH-SY5Y cells. The results of the present study demonstrate the potential ability of calpastatin to diminish calpain and calcineurin activation and mitochondrial impairment in neurons that are affected by oxidative damage.


Assuntos
Proteínas de Ligação ao Cálcio/biossíntese , Morte Celular , Expressão Gênica , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Calcineurina/metabolismo , Calpaína/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/toxicidade , Dinâmica Mitocondrial
20.
Neurochem Int ; 97: 34-41, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27155536

RESUMO

Stressor exposure activates the hypothalamic-pituitary-adrenal (HPA) axis and causes elevations in the levels of glucocorticoids (GC) from the adrenal glands. Increasing evidence has demonstrated that prolonged exposure to high GC levels can lead to oxidative stress, calcium deregulation, mitochondrial dysfunction and apoptosis in a number of cell types. However, melatonin, via its antioxidant activity, exhibits a neuroprotective effect against oxidative stress-induced cell death. Therefore, in the present study, we explored the protective effect of melatonin in GC-induced toxicity in human neuroblastoma SH-SY5Y cells. Cellular treatment with the toxically high doses of the synthetic GC receptor agonist, dexamethasone (DEX) elicited marked decreases in the levels of glutathione and increases in ROS production, lipid peroxidation and cell death. DEX toxicity also induced increases in the levels of cytosolic calcium and mitochondrial fusion proteins (Mfn1 and Opa1) but decreases in the levels of mitochondrial fission proteins (Fis1 and Drp1). Mitochondrial damage was observed in large proportions of the DEX-treated cells. Pretreatment of the cells with melatonin substantially prevented the DEX-induced toxicity. These results suggest that melatonin might exert protective effects against oxidative stress, cytosolic calcium overload and mitochondrial damage in DEX-induced neurotoxicity.


Assuntos
Cálcio/metabolismo , Citosol/metabolismo , Dexametasona/toxicidade , Melatonina/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Citosol/efeitos dos fármacos , Citosol/ultraestrutura , Relação Dose-Resposta a Droga , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Neuroblastoma/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA