Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36765794

RESUMO

Elastography complements traditional medical imaging modalities by mapping tissue stiffness to identify tumors in the endocrine system, and machine learning models can further improve diagnostic accuracy and reliability. Our objective in this review was to summarize the applications and performance of machine-learning-based elastography on the classification of endocrine tumors. Two authors independently searched electronic databases, including PubMed, Scopus, Web of Science, IEEEXpress, CINAHL, and EMBASE. Eleven (n = 11) articles were eligible for the review, of which eight (n = 8) focused on thyroid tumors and three (n = 3) considered pancreatic tumors. In all thyroid studies, the researchers used shear-wave ultrasound elastography, whereas the pancreas researchers applied strain elastography with endoscopy. Traditional machine learning approaches or the deep feature extractors were used to extract the predetermined features, followed by classifiers. The applied deep learning approaches included the convolutional neural network (CNN) and multilayer perceptron (MLP). Some researchers considered the mixed or sequential training of B-mode and elastographic ultrasound data or fusing data from different image segmentation techniques in machine learning models. All reviewed methods achieved an accuracy of ≥80%, but only three were ≥90% accurate. The most accurate thyroid classification (94.70%) was achieved by applying sequential training CNN; the most accurate pancreas classification (98.26%) was achieved using a CNN-long short-term memory (LSTM) model integrating elastography with B-mode and Doppler images.

2.
Sensors (Basel) ; 21(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34450994

RESUMO

Surveillance of sleeping posture is essential for bed-ridden patients or individuals at-risk of falling out of bed. Existing sleep posture monitoring and classification systems may not be able to accommodate the covering of a blanket, which represents a barrier to conducting pragmatic studies. The objective of this study was to develop an unobtrusive sleep posture classification that could accommodate the use of a blanket. The system uses an infrared depth camera for data acquisition and a convolutional neural network to classify sleeping postures. We recruited 66 participants (40 men and 26 women) to perform seven major sleeping postures (supine, prone (head left and right), log (left and right) and fetal (left and right)) under four blanket conditions (thick, medium, thin, and no blanket). Data augmentation was conducted by affine transformation and data fusion, generating additional blanket conditions with the original dataset. Coarse-grained (four-posture) and fine-grained (seven-posture) classifiers were trained using two fully connected network layers. For the coarse classification, the log and fetal postures were merged into a side-lying class and the prone class (head left and right) was pooled. The results show a drop of overall F1-score by 8.2% when switching to the fine-grained classifier. In addition, compared to no blanket, a thick blanket reduced the overall F1-scores by 3.5% and 8.9% for the coarse- and fine-grained classifiers, respectively; meanwhile, the lowest performance was seen in classifying the log (right) posture under a thick blanket, with an F1-score of 72.0%. In conclusion, we developed a system that can classify seven types of common sleeping postures under blankets and achieved an F1-score of 88.9%.


Assuntos
Aprendizado Profundo , Roupas de Cama, Mesa e Banho , Feminino , Humanos , Masculino , Redes Neurais de Computação , Postura , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...