Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(588)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827976

RESUMO

Insufficient T cell infiltration into noninflamed tumors, such as hepatocellular carcinoma (HCC), restricts the effectiveness of immune-checkpoint blockade (ICB) for a subset of patients. Epigenetic therapy provides further opportunities to rewire cancer-associated transcriptional programs, but whether and how selective epigenetic inhibition counteracts the immune-excluded phenotype remain incompletely defined. Here, we showed that pharmacological inhibition of histone deacetylase 8 (HDAC8), a histone H3 lysine 27 (H3K27)-specific isozyme overexpressed in a variety of human cancers, thwarts HCC tumorigenicity in a T cell-dependent manner. The tumor-suppressive effect of selective HDAC8 inhibition was abrogated by CD8+ T cell depletion or regulatory T cell adoptive transfer. Chromatin profiling of human HDAC8-expressing HCCs revealed genome-wide H3K27 deacetylation in 1251 silenced enhancer-target gene pairs that are enriched in metabolic and immune regulators. Mechanistically, down-regulation of HDAC8 increased global and enhancer acetylation of H3K27 to reactivate production of T cell-trafficking chemokines by HCC cells, thus relieving T cell exclusion in both immunodeficient and humanized mouse models. In an HCC preclinical model, selective HDAC8 inhibition increased tumor-infiltrating CD8+ T cells and potentiated eradication of established hepatomas by anti-PD-L1 therapy without evidence of toxicity. Mice treated with HDAC8 and PD-L1 coblockade were protected against subsequent tumor rechallenge as a result of the induction of memory T cells and remained tumor-free for greater than 15 months. Collectively, our study demonstrates that selective HDAC8 inhibition elicits effective and durable responses to ICB by co-opting adaptive immunity through enhancer reprogramming.


Assuntos
Carcinoma Hepatocelular , Inibidores de Histona Desacetilases , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas , Animais , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Camundongos , Proteínas Repressoras
2.
Gut ; 69(2): 365-379, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31076403

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC), mostly developed in fibrotic/cirrhotic liver, exhibits relatively low responsiveness to immune checkpoint blockade (ICB) therapy. As myeloid-derived suppressor cell (MDSC) is pivotal for immunosuppression, we investigated its role and regulation in the fibrotic microenvironment with an aim of developing mechanism-based combination immunotherapy. DESIGN: Functional significance of MDSCs was evaluated by flow cytometry using two orthotopic HCC models in fibrotic liver setting via carbon tetrachloride or high-fat high-carbohydrate diet and verified by clinical specimens. Mechanistic studies were conducted in human hepatic stellate cell (HSC)-peripheral blood mononuclear cell culture systems and fibrotic-HCC patient-derived MDSCs. The efficacy of single or combined therapy with anti-programmed death-1-ligand-1 (anti-PD-L1) and a clinically trialled BET bromodomain inhibitor i-BET762 was determined. RESULTS: Accumulation of monocytic MDSCs (M-MDSCs), but not polymorphonuclear MDSCs, in fibrotic livers significantly correlated with reduced tumour-infiltrating lymphocytes (TILs) and increased tumorigenicity in both mouse models. In human HCCs, the tumour-surrounding fibrotic livers were markedly enriched with M-MDSC, with its surrogate marker CD33 significantly associated with aggressive tumour phenotypes and poor survival rates. Mechanistically, activated HSCs induced monocyte-intrinsic p38 MAPK signalling to trigger enhancer reprogramming for M-MDSC development and immunosuppression. Treatment with p38 MAPK inhibitor abrogated HSC-M-MDSC crosstalk to prevent HCC growth. Concomitant with patient-derived M-MDSC suppression by i-BET762, combined treatment with anti-PD-L1 synergistically enhanced TILs, resulting in tumour eradication and prolonged survival in the fibrotic-HCC mouse model. CONCLUSION: Our results signify how non-tumour-intrinsic properties in the desmoplastic microenvironment can be exploited to reinstate immunosurveillance, providing readily translatable combination strategies to empower HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular/terapia , Imunoterapia/métodos , Neoplasias Hepáticas/terapia , Animais , Antígeno B7-H1/antagonistas & inibidores , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/imunologia , Reprogramação Celular/imunologia , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico , Células Estreladas do Fígado/imunologia , Humanos , Tolerância Imunológica , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/imunologia , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/terapia , Masculino , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Células Supressoras Mieloides/imunologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Microambiente Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...