Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
J Med Genet ; 60(6): 547-556, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36150828

RESUMO

BACKGROUND: Mosaicism for chromosomal structural abnormalities, other than marker or ring chromosomes, is rarely inherited. METHODS: We performed cytogenetics studies and breakpoint analyses on a family with transmission of mosaicism for a derivative chromosome 8 (der(8)), resulting from an unbalanced translocation between the long arms of chromosomes 8 and 21 over three generations. RESULTS: The proband and his maternal half-sister had mosaicism for a der(8) cell line leading to trisomy of the distal 21q, and both had Down syndrome phenotypic features. Mosaicism for a cell line with the der(8) and a normal cell line was also detected in a maternal half-cousin. The der(8) was inherited from the maternal grandmother who had four abnormal cell lines containing the der(8), in addition to a normal cell line. One maternal half-aunt had the der(8) and an isodicentric chromosome 21 (idic(21)). Sequencing studies revealed microhomologies at the junctures of the der(8) and idic(21) in the half-aunt, suggesting a replicative mechanism in the rearrangement formation. Furthermore, interstitial telomeric sequences (ITS) were identified in the juncture between chromosomes 8 and 21 in the der(8). CONCLUSION: Mosaicism in the proband, his half-sister and half-cousin resulting from loss of chromosome 21 material from the der(8) appears to be a postzygotic event due to the genomic instability of ITS and associated with selective growth advantage of normal cells. The reversion of the inherited der(8) to a normal chromosome 8 in this family resembles revertant mosaicism of point mutations. We propose that ITS could mediate recurring revertant mosaicism for some constitutional chromosomal structural abnormalities.


Assuntos
Mosaicismo , Cromossomos em Anel , Humanos , Cromossomos Humanos Par 8/genética , Cariotipagem , Hibridização in Situ Fluorescente , Aberrações Cromossômicas , Translocação Genética/genética , Células Germinativas
2.
Expert Rev Mol Diagn ; 21(4): 405-415, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33787433

RESUMO

INTRODUCTION: Sex chromosome aneuploidies (SCAs) are among the most common chromosome abnormalities observed in humans. Manifestations include low fertility, infertility, delayed language development, and dysfunction in motor development. Noninvasive prenatal screening (NIPS) based on cell-free fetal DNA from the peripheral blood of pregnant women is increasingly used for the screening of fetal chromosome abnormalities, including screening for fetal gender and fetal sex chromosome aneuploidy. A systematic review of the literature about NIPS for SCAs is needed. AREAS COVERED: This review evaluated a vast array of published studies focusing on the clinical significance, detection methods, performance of NIPS for SCAs, and the management of positive SCA results following screening with the aim of facilitating a comprehensive and systematic understanding of NIPS for SCAs. EXPERT COMMENTARY: Looking forward, NIPS is expected to become the primary screening test for common aneuploidies as well as other chromosome abnormalities, including some micro-deletions and micro-duplications, with the potential to transition from a screening test to a prenatal diagnosis method. Ultimately, the goal is to provide a safe and accurate method for increasing early diagnosis to improve long-term outcomes for the SCA patients and families by well- informed health care providers.


Assuntos
Teste Pré-Natal não Invasivo , Aneuploidia , Feminino , Humanos , Gravidez , Diagnóstico Pré-Natal/métodos , Aberrações dos Cromossomos Sexuais , Cromossomos Sexuais/genética
3.
Hum Genet ; 140(2): 361-380, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32728808

RESUMO

Chromosomal insertions are thought to be rare structural rearrangements. The current understanding of the underlying mechanisms of their origin is still limited. In this study, we sequenced 16 cases with apparent simple insertions previously identified by karyotyping and/or chromosomal microarray analysis. Using mate-pair genome sequencing (GS), we identified all 16 insertions and revised previously designated karyotypes in 75.0% (12/16) of the cases. Additional cryptic rearrangements were identified in 68.8% of the cases (11/16). The incidence of additional cryptic rearrangements in chromosomal insertions was significantly higher compared to balanced translocations and inversions reported in other studies by GS. We characterized and classified the cryptic insertion rearrangements into four groups, which were not mutually exclusive: (1) insertion segments were fragmented and their subsegments rearranged and clustered at the insertion site (10/16, 62.5%); (2) one or more cryptic subsegments were not inserted into the insertion site (5/16, 31.3%); (3) segments of the acceptor chromosome were scattered and rejoined with the insertion segments (2/16, 12.5%); and (4) copy number gains were identified in the flanking regions of the insertion site (2/16, 12.5%). In addition to the observation of these chromothripsis- or chromoanasynthesis-like events, breakpoint sequence analysis revealed microhomology to be the predominant feature. However, no significant correlation was found between the number of cryptic rearrangements and the size of the insertion. Overall, our study provide molecular characterization of karyotypically apparent simple insertions, demonstrate previously underappreciated complexities, and evidence that chromosomal insertions are likely formed by nonhomologous end joining and/or microhomology-mediated replication-based DNA repair.


Assuntos
Cromossomos Humanos/genética , Genoma Humano/genética , Mutagênese Insercional/genética , Inversão Cromossômica/genética , Mapeamento Cromossômico/métodos , Variações do Número de Cópias de DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Rearranjo Gênico/genética , Humanos , Cariotipagem/métodos , Análise em Microsséries/métodos , Análise de Sequência de DNA/métodos , Translocação Genética/genética , Sequenciamento Completo do Genoma/métodos
4.
Genet Med ; 22(10): 1633-1641, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32576985

RESUMO

PURPOSE: Improved resolution of molecular diagnostic technologies enabled detection of smaller sized exonic level copy-number variants (CNVs). The contribution of CNVs to autosomal recessive (AR) conditions may be better recognized using a large clinical cohort. METHODS: We retrospectively investigated the CNVs' contribution to AR conditions in cases subjected to chromosomal microarray analysis (CMA, N = ~70,000) and/or clinical exome sequencing (ES, N = ~12,000) at Baylor Genetics; most had pediatric onset neurodevelopmental disorders. RESULTS: CNVs contributed to biallelic variations in 87 cases, including 81 singletons and three affected sibling pairs. Seventy cases had CNVs affecting both alleles, and 17 had a CNV and a single-nucleotide variant (SNV)/indel in trans. In total, 94.3% of AR-CNVs affected one gene; among these 41.4% were single-exon and 35.0% were multiexon partial-gene events. Sixty-nine percent of homozygous AR-CNVs were embedded in homozygous genomic intervals. Five cases had large deletions unmasking an SNV/indel on the intact allele for a recessive condition, resulting in multiple molecular diagnoses. CONCLUSIONS: AR-CNVs are often smaller in size, transmitted through generations, and underrecognized due to limitations in clinical CNV detection methods. Our findings from a large clinical cohort emphasized integrated CNV and SNV/indel analyses for precise clinical and molecular diagnosis especially in the context of genomic disorders.


Assuntos
Variações do Número de Cópias de DNA , Mutação INDEL , Criança , Variações do Número de Cópias de DNA/genética , Éxons , Humanos , Estudos Retrospectivos , Sequenciamento do Exoma
5.
Genomics ; 112(5): 2937-2941, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32387503

RESUMO

To further assess the scale and level of parental somatic mosaicism, we queried the CMA database at Baylor Genetics. We selected 50 unrelated families where clinically relevant apparent de novo CNV-deletions were found in the affected probands. Parental blood samples screening using deletion junction-specific PCR revealed four parents with somatic mosaicism. Droplet digital PCR (ddPCR), qPCR, and amplicon-based next-generation sequencing (NGS) were applied to validate these findings. Using ddPCR levels of mosaicism ranged from undetectable to 18.5%. Amplicon-based NGS and qPCR for the father with undetectable mosaicism was able to detect mosaicism at 0.39%. In one mother, ddPCR analysis revealed 15.6%, 10.6%, 8.2%, and undetectable levels of mosaicism in her blood, buccal cells, saliva, and urine samples, respectively. Our data suggest that more sensitive and precise methods, e.g. CNV junction-specific LR-PCR, ddPCR, or qPCR may allow for a more refined assessment of the potential disease recurrence risk for an identified variant.


Assuntos
Variações do Número de Cópias de DNA , Mosaicismo , Reação em Cadeia da Polimerase , Técnicas de Laboratório Clínico , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Padrões de Herança , Masculino , Análise de Sequência de DNA
6.
Genet Med ; 22(3): 500-510, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31447483

RESUMO

PURPOSE: Emerging studies suggest that low-pass genome sequencing (GS) provides additional diagnostic yield of clinically significant copy-number variants (CNVs) compared with chromosomal microarray analysis (CMA). However, a prospective back-to-back comparison evaluating accuracy, efficacy, and incremental yield of low-pass GS compared with CMA is warranted. METHODS: A total of 1023 women undergoing prenatal diagnosis were enrolled. Each sample was subjected to low-pass GS and CMA for CNV analysis in parallel. CNVs were classified according to guidelines of the American College of Medical Genetics and Genomics. RESULTS: Low-pass GS not only identified all 124 numerical disorders or pathogenic or likely pathogenic (P/LP) CNVs detected by CMA in 121 cases (11.8%, 121/1023), but also defined 17 additional and clinically relevant P/LP CNVs in 17 cases (1.7%, 17/1023). In addition, low-pass GS significantly reduced the technical repeat rate from 4.6% (47/1023) for CMA to 0.5% (5/1023) and required less DNA (50 ng) as input. CONCLUSION: In the context of prenatal diagnosis, low-pass GS identified additional and clinically significant information with enhanced resolution and increased sensitivity of detecting mosaicism as compared with the CMA platform used. This study provides strong evidence for applying low-pass GS as an alternative prenatal diagnostic test.


Assuntos
Aberrações Cromossômicas , Cromossomos/genética , Análise em Microsséries/normas , Diagnóstico Pré-Natal/normas , Variações do Número de Cópias de DNA/genética , Feminino , Genoma Humano/genética , Humanos , Cariotipagem , Gravidez
7.
Hum Mutat ; 41(1): 150-168, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31448840

RESUMO

Xq22 deletions that encompass PLP1 (Xq22-PLP1-DEL) are notable for variable expressivity of neurological disease traits in females ranging from a mild late-onset form of spastic paraplegia type 2 (MIM# 312920), sometimes associated with skewed X-inactivation, to an early-onset neurological disease trait (EONDT) of severe developmental delay, intellectual disability, and behavioral abnormalities. Size and gene content of Xq22-PLP1-DEL vary and were proposed as potential molecular etiologies underlying variable expressivity in carrier females where two smallest regions of overlap (SROs) were suggested to influence disease. We ascertained a cohort of eight unrelated patients harboring Xq22-PLP1-DEL and performed high-density array comparative genomic hybridization and breakpoint-junction sequencing. Molecular characterization of Xq22-PLP1-DEL from 17 cases (eight herein and nine published) revealed an overrepresentation of breakpoints that reside within repeats (11/17, ~65%) and the clustering of ~47% of proximal breakpoints in a genomic instability hotspot with characteristic non-B DNA density. These findings implicate a potential role for genomic architecture in stimulating the formation of Xq22-PLP1-DEL. The correlation of Xq22-PLP1-DEL gene content with neurological disease trait in female cases enabled refinement of the associated SROs to a single genomic interval containing six genes. Our data support the hypothesis that genes contiguous to PLP1 contribute to EONDT.


Assuntos
Deleção Cromossômica , Cromossomos Humanos X , Estudos de Associação Genética , Predisposição Genética para Doença , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Característica Quantitativa Herdável , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Linhagem , Fenótipo , Sequências Repetitivas de Ácido Nucleico , Fatores Sexuais , Síndrome , Inativação do Cromossomo X
8.
Am J Hum Genet ; 105(6): 1102-1111, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31679651

RESUMO

Recurrent miscarriage (RM) affects millions of couples globally, and half of them have no demonstrated etiology. Genome sequencing (GS) is an enhanced and novel cytogenetic tool to define the contribution of chromosomal abnormalities in human diseases. In this study we evaluated its utility in RM-affected couples. We performed low-pass GS retrospectively for 1,090 RM-affected couples, all of whom had routine chromosome analysis. A customized sequencing and interpretation pipeline was developed to identify chromosomal rearrangements and deletions/duplications with confirmation by fluorescence in situ hybridization, chromosomal microarray analysis, and PCR studies. Low-pass GS yielded results in 1,077 of 1,090 couples (98.8%) and detected 127 chromosomal abnormalities in 11.7% (126/1,077) of couples; both members of one couple were identified with inversions. Of the 126 couples, 39.7% (50/126) had received former diagnostic results by karyotyping characteristic of normal human male or female karyotypes. Low-pass GS revealed additional chromosomal abnormalities in 50 (4.0%) couples, including eight with balanced translocations and 42 inversions. Follow-up studies of these couples showed a higher miscarriage/fetal-anomaly rate of 5/10 (50%) compared to 21/93 (22.6%) in couples with normal GS, resulting in a relative risk of 2.2 (95% confidence interval, 1.1 to 4.6). In these couples, this protocol significantly increased the diagnostic yield of chromosomal abnormalities per couple (11.7%) in comparison to chromosome analysis (8.0%, chi-square test p = 0.000751). In summary, low-pass GS identified underlying chromosomal aberrations in 1 in 9 RM-affected couples, enabling identification of a subgroup of couples with increased risk of subsequent miscarriage who would benefit from a personalized intervention.


Assuntos
Aborto Habitual/diagnóstico , Aborto Habitual/genética , Aberrações Cromossômicas , Sequenciamento Completo do Genoma/métodos , Adulto , Feminino , Seguimentos , Humanos , Cariotipagem , Masculino , Gravidez , Prognóstico , Estudos Retrospectivos
9.
Genome Med ; 11(1): 30, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101064

RESUMO

BACKGROUND: Exome sequencing (ES) has been successfully applied in clinical detection of single nucleotide variants (SNVs) and small indels. However, identification of copy number variants (CNVs) using ES data remains challenging. The purpose of this study is to understand the contribution of CNVs and copy neutral runs of homozygosity (ROH) in molecular diagnosis of patients referred for ES. METHODS: In a cohort of 11,020 consecutive ES patients, an Illumina SNP array analysis interrogating mostly coding SNPs was performed as a quality control (QC) measurement and for CNV/ROH detection. Among these patients, clinical chromosomal microarray analysis (CMA) was performed at Baylor Genetics (BG) on 3229 patients, either before, concurrently, or after ES. We retrospectively analyzed the findings from CMA and the QC array. RESULTS: The QC array can detect ~ 70% of pathogenic/likely pathogenic CNVs (PCNVs) detectable by CMA. Out of the 11,020 ES cases, the QC array identified PCNVs in 327 patients and uniparental disomy (UPD) disorder-related ROH in 10 patients. The overall PCNV/UPD detection rate was 5.9% in the 3229 ES patients who also had CMA at BG; PCNV/UPD detection rate was higher in concurrent ES and CMA than in ES with prior CMA (7.2% vs 4.6%). The PCNVs/UPD contributed to the molecular diagnoses in 17.4% (189/1089) of molecularly diagnosed ES cases with CMA and were estimated to contribute in 10.6% of all molecularly diagnosed ES cases. Dual diagnoses with both PCNVs and SNVs were detected in 38 patients. PCNVs affecting single recessive disorder genes in a compound heterozygous state with SNVs were detected in 4 patients, and homozygous deletions (mostly exonic deletions) were detected in 17 patients. A higher PCNV detection rate was observed for patients with syndromic phenotypes and/or cardiovascular abnormalities. CONCLUSIONS: Our clinical genomics study demonstrates that detection of PCNV/UPD through the QC array or CMA increases ES diagnostic rate, provides more precise molecular diagnosis for dominant as well as recessive traits, and enables more complete genetic diagnoses in patients with dual or multiple molecular diagnoses. Concurrent ES and CMA using an array with exonic coverage for disease genes enables most effective detection of both CNVs and SNVs and therefore is recommended especially in time-sensitive clinical situations.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma/métodos , Testes Genéticos/métodos , Análise em Microsséries/métodos , Aberrações Cromossômicas , Feminino , Testes Genéticos/normas , Homozigoto , Humanos , Limite de Detecção , Masculino , Análise em Microsséries/normas , Sequenciamento do Exoma/normas
10.
Genome Med ; 11(1): 25, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31014393

RESUMO

BACKGROUND: Intrachromosomal triplications (TRP) can contribute to disease etiology via gene dosage effects, gene disruption, position effects, or fusion gene formation. Recently, post-zygotic de novo triplications adjacent to copy-number neutral genomic intervals with runs of homozygosity (ROH) have been shown to result in uniparental isodisomy (UPD). The genomic structure of these complex genomic rearrangements (CGRs) shows a consistent pattern of an inverted triplication flanked by duplications (DUP-TRP/INV-DUP) formed by an iterative DNA replisome template-switching mechanism during replicative repair of a single-ended, double-stranded DNA (seDNA), the ROH results from an interhomolog or nonsister chromatid template switch. It has been postulated that these CGRs may lead to genetic abnormalities in carriers due to dosage-sensitive genes mapping within the copy-number variant regions, homozygosity for alleles at a locus causing an autosomal recessive (AR) disease trait within the ROH region, or imprinting-associated diseases. METHODS: Here, we report a family wherein the affected subject carries a de novo 2.2-Mb TRP followed by 42.2 Mb of ROH and manifests clinical features overlapping with those observed in association with chromosome 14 maternal UPD (UPD(14)mat). UPD(14)mat can cause clinical phenotypic features enabling a diagnosis of Temple syndrome. This CGR was then molecularly characterized by high-density custom aCGH, genome-wide single-nucleotide polymorphism (SNP) and methylation arrays, exome sequencing (ES), and the Oxford Nanopore long-read sequencing technology. RESULTS: We confirmed the postulated DUP-TRP/INV-DUP structure by multiple orthogonal genomic technologies in the proband. The methylation status of known differentially methylated regions (DMRs) on chromosome 14 revealed that the subject shows the typical methylation pattern of UPD(14)mat. Consistent with these molecular findings, the clinical features overlap with those observed in Temple syndrome, including speech delay. CONCLUSIONS: These data provide experimental evidence that, in humans, triplication can lead to segmental UPD and imprinting disease. Importantly, genotype/phenotype analyses further reveal how a post-zygotically generated complex structural variant, resulting from a replication-based mutational mechanism, contributes to expanding the clinical phenotype of known genetic syndromes. Mechanistically, such events can distort transmission genetics resulting in homozygosity at a locus for which only one parent is a carrier as well as cause imprinting diseases.


Assuntos
Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 14/genética , Impressão Genômica , Transtornos Cromossômicos/patologia , Metilação de DNA , Replicação do DNA , Humanos , Masculino , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Adulto Jovem
11.
Genet Med ; 21(3): 663-675, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30158690

RESUMO

PURPOSE: Defects in the cohesin pathway are associated with cohesinopathies, notably Cornelia de Lange syndrome (CdLS). We aimed to delineate pathogenic variants in known and candidate cohesinopathy genes from a clinical exome perspective. METHODS: We retrospectively studied patients referred for clinical exome sequencing (CES, N = 10,698). Patients with causative variants in novel or recently described cohesinopathy genes were enrolled for phenotypic characterization. RESULTS: Pathogenic or likely pathogenic single-nucleotide and insertion/deletion variants (SNVs/indels) were identified in established disease genes including NIPBL (N = 5), SMC1A (N = 14), SMC3 (N = 4), RAD21 (N = 2), and HDAC8 (N = 8). The phenotypes in this genetically defined cohort skew towards the mild end of CdLS spectrum as compared with phenotype-driven cohorts. Candidate or recently reported cohesinopathy genes were supported by de novo SNVs/indels in STAG1 (N = 3), STAG2 (N = 5), PDS5A (N = 1), and WAPL (N = 1), and one inherited SNV in PDS5A. We also identified copy-number deletions affecting STAG1 (two de novo, one of unknown inheritance) and STAG2 (one of unknown inheritance). Patients with STAG1 and STAG2 variants presented with overlapping features yet without characteristic facial features of CdLS. CONCLUSION: CES effectively identified disease-causing alleles at the mild end of the cohensinopathy spectrum and enabled characterization of candidate disease genes.


Assuntos
Variação Biológica da População/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Adolescente , Alelos , Antígenos Nucleares/genética , Proteínas de Transporte/genética , Criança , Pré-Escolar , Estudos de Coortes , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Exoma/genética , Feminino , Frequência do Gene/genética , Heterogeneidade Genética , Humanos , Mutação INDEL/genética , Masculino , Mutação , Proteínas Nucleares/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética , Estudos Retrospectivos , Sequenciamento do Exoma/métodos , Coesinas
12.
J Hum Genet ; 64(3): 253-255, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30542208

RESUMO

In view of conflicting reports on the pathogenicity of 15q11.2 CNVs of the breakpoints 1-2 (BP1-BP2) region and lack of association with a specific phenotype, we collected phenotypic data on 51,462 patients referred for genetic testing at two centers (Magee-Womens Hospital of UPMC and Baylor Genetics Laboratories, Baylor College of Medicine). Using array CGH, 262 patients with deletions and 215 with duplications were identified and tested for their association with four phenotypes (developmental delay, dysmorphic features, autism group of disorders, and epilepsy/seizures). Only association of deletions with dysmorphic features was observed (P = 0.013) with low penetrance (3.8%). Our results, viewed in the context of other reports suggesting the lack of a clear phenotypic outcome, underscore the need for detailed phenotypic studies to better understand the pathogenicity of 15q11.2 (BP1-BP2) CNVs.


Assuntos
Transtorno Autístico/genética , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 15/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Deficiência Intelectual/genética , Transtorno Autístico/patologia , Estudos de Coortes , Deficiências do Desenvolvimento/patologia , Epilepsia/patologia , Humanos , Deficiência Intelectual/patologia , Fenótipo
13.
Genet Med ; 21(4): 816-825, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30190612

RESUMO

PURPOSE: To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. METHODS: We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. RESULTS: The number of rare likely deleterious variants in functionally intolerant genes ("other hits") correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with their carrier family members. Probands with 16p12.1 deletion and a strong family history presented more severe clinical features (p=0.04) and higher burden of other hits compared with those with mild/no family history (p=0.001). The number of other hits also correlated with severity of cognitive impairment in probands carrying pathogenic CNVs (n=53) or de novo pathogenic variants in disease genes (n=290), and negatively correlated with head size among 80 probands with 16p11.2 deletion. These co-occurring hits involved known disease-associated genes such as SETD5, AUTS2, and NRXN1, and were enriched for cellular and developmental processes. CONCLUSION: Accurate genetic diagnosis of complex disorders will require complete evaluation of the genetic background even after a candidate disease-associated variant is identified.


Assuntos
Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Triagem de Portadores Genéticos , Metiltransferases/genética , Proteínas do Tecido Nervoso/genética , Proteínas/genética , Transtorno Autístico/fisiopatologia , Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 16/genética , Cognição/fisiologia , Proteínas do Citoesqueleto , Variações do Número de Cópias de DNA/genética , Feminino , Regulação da Expressão Gênica/genética , Patrimônio Genético , Humanos , Masculino , Moléculas de Adesão de Célula Nervosa , Pais , Linhagem , Fenótipo , Deleção de Sequência/genética , Irmãos , Fatores de Transcrição
14.
Nat Commun ; 9(1): 4885, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459321

RESUMO

Coffin-Siris and Nicolaides-Baraitser syndromes (CSS and NCBRS) are Mendelian disorders caused by mutations in subunits of the BAF chromatin remodeling complex. We report overlapping peripheral blood DNA methylation epi-signatures in individuals with various subtypes of CSS (ARID1B, SMARCB1, and SMARCA4) and NCBRS (SMARCA2). We demonstrate that the degree of similarity in the epi-signatures of some CSS subtypes and NCBRS can be greater than that within CSS, indicating a link in the functional basis of the two syndromes. We show that chromosome 6q25 microdeletion syndrome, harboring ARID1B deletions, exhibits a similar CSS/NCBRS methylation profile. Specificity of this epi-signature was confirmed across a wide range of neurodevelopmental conditions including other chromatin remodeling and epigenetic machinery disorders. We demonstrate that a machine-learning model trained on this DNA methylation profile can resolve ambiguous clinical cases, reclassify those with variants of unknown significance, and identify previously undiagnosed subjects through targeted population screening.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Cromossômicas não Histona/genética , Metilação de DNA , Fatores de Transcrição/genética , Anormalidades Múltiplas/diagnóstico , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Epigenômica , Face/anormalidades , Fácies , Deformidades Congênitas do Pé/diagnóstico , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Humanos , Hipotricose/diagnóstico , Hipotricose/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Micrognatismo/diagnóstico , Micrognatismo/genética , Mutação , Pescoço/anormalidades , Proteínas Nucleares/genética , Proteína SMARCB1/genética , Síndrome
15.
Arch Gynecol Obstet ; 298(2): 289-295, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29808250

RESUMO

PURPOSE: Wolf-Hirschhorn syndrome (WHS) is a contiguous gene syndrome due to terminal chromosome 4p deletions. We explored prenatal diagnosis of WHS by ultrasound as well as karyotype and single nucleotide polymorphism array (SNP array) to characterize the structural variants of WHS prenatally. METHODS: Ten prenatal cases of WHS were evaluated for the indication of the invasive testing, the ultrasound features, and cytogenetic and microarray results. RESULTS: Eight cases were diagnosed by karyotyping and SNP array, while two cases were detected only by SNP array. Combining our cases with 37 prenatal cases from the literature, the most common sonographic features were IUGR (97.7%) and typical facial appearance (82.9%). Other less common phenotypes included renal hypoplasia (36.2%), cardiac malformation (29.8%), cleft lip and palate (25.5%), cerebral abnormalities (25.5%), skeletal anomalies (21.3%), and increased nuchal translucency/nuchal fold thickness (NT/NF) (19%). CONCLUSIONS: The most common intrauterine phenotypes of WHS were severe IUGR and typical facial appearance with other less consistent ultrasound findings. Noninvasive prenatal testing (NIPT) is one very promising screening tool for WHS. SNP array can improve diagnostic precision for detecting WHS, especially for the cryptic aberrations that cannot be identified by the traditional karyotyping. Ectopic kidney may be a previously unrecognized phenotype of WHS.


Assuntos
Aconselhamento Genético/métodos , Diagnóstico Pré-Natal/métodos , Síndrome de Wolf-Hirschhorn/diagnóstico por imagem , Síndrome de Wolf-Hirschhorn/diagnóstico , Adulto , Feminino , Humanos , Gravidez , Estudos Retrospectivos , Síndrome de Wolf-Hirschhorn/patologia , Adulto Jovem
16.
Birth Defects Res ; 110(4): 364-371, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29359448

RESUMO

BACKGROUND: Genetic skeletal disorders (GSDs) are clinically and genetically heterogeneous with more than 350 genes accounting for the diversity of disease phenotypes. Prenatal diagnosis of these disorders has been challenging because of the limited but variable prenatal phenotypes, highlighting the need of a novel genetic approach. Short-rib polydactyly syndrome (SRPS) Type III is an autosomal recessive GSD characterized by extreme narrowness of the thorax, severely shortened tubular bones, polydactyly and multiple malformations. METHODS: Cytogenetic and molecular analyses using GTG-banding, single nucleotide polymorphism array and a novel GSDs targeted gene panel sequencing were performed in a 24 weeks fetus with increased biparietal diameter (BPD), short limbs, narrow thorax and polyhydramnios. RESULTS: No chromosomal abnormalities and pathogenic copy number variations (CNVs) were detected in the fetus. Two novel compound heterozygous mutations c.2992C > T and c.12836G > C in the DYNC2H1 gene were identified by targeted genes panel sequencing. A literature review was performed to delineate the prenatal phenotype of SRPS Type III. CONCLUSION: This is the first report of prenatal diagnosis of DYNC2H1 mutations causing SRPS Type III in a fetus with increased BPD associated with polyhydramnios in China. Our findings expand the mutation spectrum of DYNC2H1 in this rare disease and demonstrate that targeted gene panel capture followed by next-generation sequencing (NGS) is an efficient and cost-effective method to perform a molecular prenatal diagnosis of a rare genetic skeletal disorder.


Assuntos
Dineínas do Citoplasma/genética , Feto , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Poli-Hidrâmnios , Diagnóstico Pré-Natal , Síndrome de Costela Curta e Polidactilia , Feminino , Humanos , Poli-Hidrâmnios/diagnóstico , Poli-Hidrâmnios/genética , Gravidez , Síndrome de Costela Curta e Polidactilia/diagnóstico , Síndrome de Costela Curta e Polidactilia/genética
17.
Curr Protoc Hum Genet ; 96: 8.18.1-8.18.16, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364520

RESUMO

Balanced chromosomal rearrangements (or balanced chromosome abnormalities, BCAs) are common chromosomal structural variants. Emerging studies have demonstrated the feasibility of using whole-genome sequencing (WGS) for detection of BCA-associated breakpoints, but the requirement for a priori knowledge of the rearranged regions from G-banded chromosome analysis limits its application. The protocols described here are based on low-pass WGS for detecting BCA events independent from chromosome analysis, and has been validated using genomic data from the 1000 Genomes Project. This approach adopts non-size-selected mate-pair library (3∼8 kb) with 2∼3 µg DNA as input, and requires only 30 million read-pairs (50 bp, equivalent to 1-fold base-coverage) for each sample. The complete procedure takes 13 days and the total cost is estimated to be less than $600 (USD) per sample. © 2018 by John Wiley & Sons, Inc.


Assuntos
Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Genoma Humano/genética , Sequenciamento Completo do Genoma , Transtornos Cromossômicos/patologia , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Translocação Genética
18.
Genet Med ; 20(7): 697-707, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29095815

RESUMO

PURPOSE: Recent studies demonstrate that whole-genome sequencing enables detection of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic methods. We aimed to assess our analytical tool for detecting BCAs in the 1000 Genomes Project without knowing which bands were affected. METHODS: The 1000 Genomes Project provides an unprecedented integrated map of structural variants in phenotypically normal subjects, but there is no information on potential inclusion of subjects with apparent BCAs akin to those traditionally detected in diagnostic cytogenetics laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project with sufficient physical coverage (8.25-fold). RESULTS: With this approach, we detected four reciprocal balanced translocations and four inversions, ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and polymerase chain reaction studies. One of these DNAs has a subtle translocation that is not readily identified by chromosome analysis because of the similarity of the banding patterns and size of exchanged segments, and another results in disruption of all transcripts of an OMIM gene. CONCLUSION: Our study demonstrates the extension of utilizing low-pass whole-genome sequencing for unbiased detection of BCAs including translocations and inversions previously unknown in the 1000 Genomes Project.


Assuntos
Transtornos Cromossômicos/diagnóstico , Análise Citogenética/métodos , Aberrações Cromossômicas , Inversão Cromossômica/genética , Cromossomos/genética , Rearranjo Gênico/genética , Genoma/genética , Projeto Genoma Humano , Humanos , Cariotipagem/métodos , Translocação Genética/genética , Sequenciamento Completo do Genoma/métodos
20.
Am J Obstet Gynecol ; 217(6): 691.e1-691.e6, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29032050

RESUMO

BACKGROUND: Since its debut in 2011, cell-free fetal DNA screening has undergone rapid expansion with respect to both utilization and coverage. However, conclusive data regarding the clinical validity and utility of this screening tool, both for the originally included common autosomal and sex-chromosomal aneuploidies as well as the more recently added chromosomal microdeletion syndromes, have lagged behind. Thus, there is a continued need to educate clinicians and patients about the current benefits and limitations of this screening tool to inform pre- and posttest counseling, pre/perinatal decision making, and medical risk assessment/management. OBJECTIVE: The objective of this study was to determine the positive predictive value and false-positive rates for different chromosomal abnormalities identified by cell-free fetal DNA screening using a large data set of diagnostic testing results on invasive samples submitted to the laboratory for confirmatory studies. STUDY DESIGN: We tested 712 patient samples sent to our laboratory to confirm a cell-free fetal DNA screening result, indicating high risk for a chromosome abnormality. We compiled data from all cases in which the indication for confirmatory testing was a positive cell-free fetal DNA screen, including the common trisomies, sex chromosomal aneuploidies, microdeletion syndromes, and other large genome-wide copy number abnormalities. Testing modalities included fluorescence in situ hybridization, G-banded karyotype, and/or chromosomal microarray analysis performed on chorionic villus samples, amniotic fluid, or postnatally obtained blood samples. Positive predictive values and false-positive rates were calculated from tabulated data. RESULTS: The positive predictive values for trisomy 13, 18, and 21 were consistent with previous reports at 45%, 76%, and 84%, respectively. For the microdeletion syndrome regions, positive predictive values ranged from 0% for detection of Cri-du-Chat syndrome and Prader-Willi/Angelman syndrome to 14% for 1p36 deletion syndrome and 21% for 22q11.2 deletion syndrome. Detection of sex chromosomal aneuploidies had positive predictive values of 26% for monosomy X, 50% for 47,XXX, and 86% for 47,XXY. CONCLUSION: The positive predictive values for detection of common autosomal and sex chromosomal aneuploidies by cell-free fetal DNA screening were comparable with other studies. Identification of microdeletions was associated with lower positive predictive values and higher false-positive rates, likely because of the low prevalence of the individual targeted microdeletion syndromes in the general population. Although the obtained positive predictive values compare favorably with those seen in traditional screening approaches for common aneuploidies, they highlight the importance of educating clinicians and patients on the limitations of cell-free fetal DNA screening tests. Improvement of the cell-free fetal DNA screening technology and continued monitoring of its performance after introduction into clinical practice will be important to fully establish its clinical utility. Nonetheless, our data provide valuable information that may aid result interpretation, patient counseling, and clinical decision making/management.


Assuntos
Ácidos Nucleicos Livres/sangue , Transtornos Cromossômicos/sangue , Amniocentese , Síndrome de Angelman/sangue , Síndrome de Angelman/diagnóstico , Síndrome de Angelman/genética , Amostra da Vilosidade Coriônica , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Cromossomos Humanos X/genética , Síndrome de Cri-du-Chat/sangue , Síndrome de Cri-du-Chat/diagnóstico , Síndrome de Cri-du-Chat/genética , Síndrome de Down/sangue , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Síndrome de Klinefelter/sangue , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/genética , Análise em Microsséries , Síndrome de Prader-Willi/sangue , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Valor Preditivo dos Testes , Gravidez , Diagnóstico Pré-Natal , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/sangue , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/diagnóstico , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Trissomia/diagnóstico , Trissomia/genética , Síndrome da Trissomia do Cromossomo 13/sangue , Síndrome da Trissomia do Cromossomo 13/diagnóstico , Síndrome da Trissomia do Cromossomo 13/genética , Síndrome da Trissomía do Cromossomo 18/sangue , Síndrome da Trissomía do Cromossomo 18/diagnóstico , Síndrome da Trissomía do Cromossomo 18/genética , Síndrome de Turner/sangue , Síndrome de Turner/diagnóstico , Síndrome de Turner/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...