Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 23(1): 111, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641838

RESUMO

BACKGROUND: Sporozoites (SPZ), the infective form of Plasmodium falciparum malaria, can be inoculated into the human host skin by Anopheline mosquitoes. These SPZ migrate at approximately 1 µm/s to find a blood vessel and travel to the liver where they infect hepatocytes and multiply. In the skin they are still low in number (50-100 SPZ) and vulnerable to immune attack by antibodies and skin macrophages. This is why whole SPZ and SPZ proteins are used as the basis for most malaria vaccines currently deployed and undergoing late clinical testing. Mosquitoes typically inoculate SPZ into a human host between 14 and 25 days after their previous infective blood meal. However, it is unknown whether residing time within the mosquito affects SPZ condition, infectivity or immunogenicity. This study aimed to unravel how the age of P. falciparum SPZ in salivary glands (14, 17, or 20 days post blood meal) affects their infectivity and the ensuing immune responses. METHODS: SPZ numbers, viability by live/dead staining, motility using dedicated sporozoite motility orienting and organizing tool software (SMOOT), and infectivity of HC-04.j7 liver cells at 14, 17 and 20 days after mosquito feeding have been investigated. In vitro co-culture assays with SPZ stimulated monocyte-derived macrophages (MoMɸ) and CD8+ T-cells, analysed by flow cytometry, were used to investigate immune responses. RESULTS: SPZ age did not result in different SPZ numbers or viability. However, a markedly different motility pattern, whereby motility decreased from 89% at day 14 to 80% at day 17 and 71% at day 20 was observed (p ≤ 0.0001). Similarly, infectivity of day 20 SPZ dropped to ~ 50% compared with day 14 SPZ (p = 0.004). MoMɸ were better able to take up day 14 SPZ than day 20 SPZ (from 7.6% to 4.1%, p = 0.03) and displayed an increased expression of pro-inflammatory CD80, IL-6 (p = 0.005), regulatory markers PDL1 (p = 0.02), IL-10 (p = 0.009) and cytokines upon phagocytosis of younger SPZ. Interestingly, co-culture of these cells with CD8+ T-cells revealed a decreased expression of activation marker CD137 and cytokine IFNγ compared to their day 20 counterparts. These findings suggest that older (day 17-20) P. falciparum SPZ are less infectious and have decreased immune regulatory potential. CONCLUSION: Overall, this data is a first step in enhancing the understanding of how mosquito residing time affects P. falciparum SPZ and could impact the understanding of the P. falciparum infectious reservoir and the potency of whole SPZ vaccines.


Assuntos
Culicidae , Vacinas Antimaláricas , Malária Falciparum , Animais , Humanos , Esporozoítos , Linfócitos T CD8-Positivos , Envelhecimento , Plasmodium falciparum
2.
Front Immunol ; 14: 1204606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720224

RESUMO

Despite promising results in malaria-naïve individuals, whole sporozoite (SPZ) vaccine efficacy in malaria-endemic settings has been suboptimal. Vaccine hypo-responsiveness due to previous malaria exposure has been posited as responsible, indicating the need for SPZ vaccines of increased immunogenicity. To this end, we here demonstrate a proof-of-concept for altering SPZ immunogenicity, where supramolecular chemistry enables chemical augmentation of the parasite surface with a TLR7 agonist-based adjuvant (SPZ-SAS(CL307)). In vitro, SPZ-SAS(CL307) remained well recognized by immune cells and induced a 35-fold increase in the production of pro-inflammatory IL-6 (p < 0.001). More promisingly, immunization of mice with SPZ-SAS(CL307) yielded improved SPZ-specific IFN-γ production in liver-derived NK cells (percentage IFN-γ+ cells 11.1 ± 1.8 vs. 9.4 ± 1.5%, p < 0.05), CD4+ T cells (4.7 ± 4.3 vs. 1.8 ± 0.7%, p < 0.05) and CD8+ T cells (3.6 ± 1.4 vs. 2.5 ± 0.9%, p < 0.05). These findings demonstrate the potential of using chemical augmentation strategies to enhance the immunogenicity of SPZ-based malaria vaccines.


Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Linfócitos T CD8-Positivos , Esporozoítos , Malária/prevenção & controle , Adjuvantes Imunológicos
3.
NPJ Vaccines ; 7(1): 139, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333336

RESUMO

Whole-sporozoite (WSp) malaria vaccines induce protective immune responses in animal malaria models and in humans. A recent clinical trial with a WSp vaccine comprising genetically attenuated parasites (GAP) which arrest growth early in the liver (PfSPZ-GA1), showed that GAPs can be safely administered to humans and immunogenicity is comparable to radiation-attenuated PfSPZ Vaccine. GAPs that arrest late in the liver stage (LA-GAP) have potential for increased potency as shown in rodent malaria models. Here we describe the generation of four putative P. falciparum LA-GAPs, generated by CRISPR/Cas9-mediated gene deletion. One out of four gene-deletion mutants produced sporozoites in sufficient numbers for further preclinical evaluation. This mutant, PfΔmei2, lacking the mei2-like RNA gene, showed late liver growth arrest in human liver-chimeric mice with human erythrocytes, absence of unwanted genetic alterations and sensitivity to antimalarial drugs. These features of PfΔmei2 make it a promising vaccine candidate, supporting further clinical evaluation. PfΔmei2 (GA2) has passed regulatory approval for safety and efficacy testing in humans based on the findings reported in this study.

4.
Proc Natl Acad Sci U S A ; 119(35): e2209729119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994647

RESUMO

Glutaminyl cyclase (QC) modifies N-terminal glutamine or glutamic acid residues of target proteins into cyclic pyroglutamic acid (pGlu). Here, we report the biochemical and functional analysis of Plasmodium QC. We show that sporozoites of QC-null mutants of rodent and human malaria parasites are recognized by the mosquito immune system and melanized when they reach the hemocoel. Detailed analyses of rodent malaria QC-null mutants showed that sporozoite numbers in salivary glands are reduced in mosquitoes infected with QC-null or QC catalytically dead mutants. This phenotype can be rescued by genetic complementation or by disrupting mosquito melanization or phagocytosis by hemocytes. Mutation of a single QC-target glutamine of the major sporozoite surface protein (circumsporozoite protein; CSP) of the rodent parasite Plasmodium berghei also results in melanization of sporozoites. These findings indicate that QC-mediated posttranslational modification of surface proteins underlies evasion of killing of sporozoites by the mosquito immune system.


Assuntos
Aminoaciltransferases , Culicidae , Malária , Processamento de Proteína Pós-Traducional , Esporozoítos , Aminoaciltransferases/imunologia , Animais , Culicidae/imunologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Malária/genética , Malária/imunologia , Malária/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Processamento de Proteína Pós-Traducional/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia
5.
PLoS One ; 16(7): e0254498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34252120

RESUMO

To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.


Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Animais , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Eritrócitos/metabolismo , Feminino , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/genética , Malária Falciparum/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Proteína Ribossômica L3 , Esporozoítos/patogenicidade
6.
PLoS Pathog ; 16(9): e1008799, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898164

RESUMO

Professional antigen-presenting cells (APCs), like macrophages (Mϕs) and dendritic cells (DCs), are central players in the induction of natural and vaccine-induced immunity to malaria, yet very little is known about the interaction of SPZ with human APCs. Intradermal delivery of whole-sporozoite vaccines reduces their effectivity, possibly due to dermal immunoregulatory effects. Therefore, understanding these interactions could prove pivotal to malaria vaccination. We investigated human APC responses to recombinant circumsporozoite protein (recCSP), SPZ and anti-CSP opsonized SPZ both in monocyte derived MoDCs and MoMϕs. Both MoDCs and MoMϕs readily took up recCSP but did not change phenotype or function upon doing so. SPZ are preferentially phagocytosed by MoMϕs instead of DCs and phagocytosis greatly increased after opsonization. Subsequently MoMϕs show increased surface marker expression of activation markers as well as tolerogenic markers such as Programmed Death-Ligand 1 (PD-L1). Additionally they show reduced motility, produce interleukin 10 and suppressed interferon gamma (IFNγ) production by antigen specific CD8+ T cells. Importantly, we investigated phenotypic responses to SPZ in primary dermal APCs isolated from human skin explants, which respond similarly to their monocyte-derived counterparts. These findings are a first step in enhancing our understanding of pre-erythrocytic natural immunity and the pitfalls of intradermal vaccination-induced immunity.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Macrófagos/imunologia , Malária/imunologia , Plasmodium berghei/imunologia , Proteínas de Protozoários/imunologia , Pele/imunologia , Esporozoítos/imunologia , Animais , Células Cultivadas , Feminino , Humanos , Macrófagos/parasitologia , Malária/parasitologia , Camundongos , Pele/parasitologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-32587831

RESUMO

Transgenic reporter lines of malaria parasites that express fluorescent or luminescent proteins are valuable tools for drug and vaccine screening assays as well as to interrogate parasite gene function. Different Plasmodium falciparum (Pf ) reporter lines exist, however nearly all have been created in the African NF54/3D7 laboratory strain. Here we describe the generation of novel reporter lines, using CRISPR/Cas9 gene modification, both in the standard Pf NF54 background and in a recently described Cambodian P. falciparum NF135.C10 line. Sporozoites of this line show more effective hepatocyte invasion and enhanced liver merozoite development compared to Pf NF54. We first generated Pf NF54 reporter parasites to analyze two novel promoters for constitutive and high expression of mCherry-luciferase and GFP in blood and mosquito stages. The promoter sequences were selected based on available transcriptome data and are derived from two housekeeping genes, i.e., translation initiation factor SUI1, putative (sui1, PF3D7_1243600) and 40S ribosomal protein S30 (40s, PF3D7_0219200). We then generated and characterized reporter lines in the Pf NF135.C10 line which express GFP driven by the sui1 and 40s promoters as well as by the previously used ef1α promoter (GFP@ef1α, GFP@sui1, GFP@40s). The GFP@40s reporter line showed strongest GFP expression in liver stages as compared to the other two lines. The strength of reporter expression by the 40s promoter throughout the complete life cycle, including liver stages, makes transgenic lines expressing reporters by the 40s promoter valuable novel tools for analyses of P. falciparum.


Assuntos
Genes Reporter , Plasmodium falciparum , Regiões Promotoras Genéticas , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Culicidae , Luciferases/genética , Proteínas Luminescentes/genética , Malária Falciparum , Plasmodium falciparum/genética , Esporozoítos
8.
Front Cell Infect Microbiol ; 10: 591046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392104

RESUMO

Chimeric rodent malaria parasites with the endogenous circumsporozoite protein (csp) gene replaced with csp from the human parasites Plasmodium falciparum (Pf) and P. vivax (Pv) are used in preclinical evaluation of CSP vaccines. Chimeric rodent parasites expressing PfCSP have also been assessed as whole sporozoite (WSP) vaccines. Comparable chimeric P. falciparum parasites expressing CSP of P. vivax could be used both for clinical evaluation of vaccines targeting PvCSP in controlled human P. falciparum infections and in WSP vaccines targeting P. vivax and P. falciparum. We generated chimeric P. falciparum parasites expressing both PfCSP and PvCSP. These Pf-PvCSP parasites produced sporozoite comparable to wild type P. falciparum parasites and expressed PfCSP and PvCSP on the sporozoite surface. Pf-PvCSP sporozoites infected human hepatocytes and induced antibodies to the repeats of both PfCSP and PvCSP after immunization of mice. These results support the use of Pf-PvCSP sporozoites in studies optimizing vaccines targeting PvCSP.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Plasmodium falciparum , Plasmodium vivax , Animais , Anticorpos Antiprotozoários , Vacinas Antimaláricas/genética , Malária Falciparum/prevenção & controle , Camundongos , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética
9.
Sci Rep ; 9(1): 13436, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530862

RESUMO

Given the number of global malaria cases and deaths, the need for a vaccine against Plasmodium falciparum (Pf) remains pressing. Administration of live, radiation-attenuated Pf sporozoites can fully protect malaria-naïve individuals. Despite the fact that motility of these attenuated parasites is key to their infectivity and ultimately protective efficacy, sporozoite motility in human tissue (e.g. skin) remains wholly uncharacterized to date. We show that the ability to quantitatively address the complexity of sporozoite motility in human tissue provides an additional tool in the development of attenuated sporozoite vaccines. We imaged Pf movement in the skin of its natural host and compared wild-type and radiation-attenuated GFP-expressing Pf sporozoites. Using custom image analysis software and human skin explants we were able to quantitatively study their key motility features. This head-to-head comparison revealed that radiation attenuation impaired the capacity of sporozoites to vary their movement angle, velocity and direction, promoting less refined movement patterns. Understanding and overcoming these changes in motility will contribute to the development of an efficacious attenuated parasite malaria vaccine.


Assuntos
Plasmodium falciparum/efeitos da radiação , Pele/parasitologia , Esporozoítos/patogenicidade , Esporozoítos/efeitos da radiação , Animais , Anopheles/parasitologia , Proteínas de Fluorescência Verde/genética , Interações Hospedeiro-Parasita , Humanos , Processamento de Imagem Assistida por Computador , Organismos Geneticamente Modificados , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Software
10.
Theranostics ; 9(10): 2768-2778, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244921

RESUMO

Introduction: The skin stage of malaria is a vital and vulnerable migratory life stage of the parasite. It has been characterised in rodent models, but remains wholly uninvestigated for human malaria parasites. To enable in depth analysis of not genetically modified (non-GMO) Plasmodium falciparum (Pf) sporozoite behaviour in human skin, we devised a labelling technology (Cy5M2, targeting the sporozoite mitochondrion) that supports tracking of individual non-GMO sporozoites in human skin. Methods: Sporozoite labelling with Cy5M2 was performed in vitro as well as via the feed of infected Anopheles mosquitos. Labelling was validated using confocal microscopy and flow cytometry and the fitness of labelled sporozoites was determined by analysis of infectivity to human hepatocytes in vitro, and in vivo in a rodent infection model. Using confocal video microscopy and custom software, single-sporozoite tracking studies in human skin-explants were performed. Results: Both in vitro and in mosquito labelling strategies yielded brightly fluorescent sporozoites of three different Plasmodium species. Cy5M2 uptake colocalized with MitoTracker® green and could be blocked using the known Translocator protein (TSPO)-inhibitor PK11195. This method supported the visualization and subsequent quantitative analysis of the migration patterns of individual non-GMO Pf sporozoites in human skin and did not affect the fitness of sporozoites. Conclusions: The ability to label and image non-GMO Plasmodium sporozoites provides the basis for detailed studies on the human skin stage of malaria with potential for in vivo translation. As such, it is an important tool for development of vaccines based on attenuated sporozoites and their route of administration.


Assuntos
Carbocianinas/metabolismo , Corantes Fluorescentes/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Pele/parasitologia , Coloração e Rotulagem/métodos , Animais , Modelos Animais de Doenças , Hepatócitos/parasitologia , Humanos , Camundongos , Microscopia Confocal , Microscopia de Vídeo , Modelos Teóricos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium yoelii/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento
11.
Malar J ; 18(1): 155, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046772

RESUMO

BACKGROUND: The protective efficacy of the most promising malaria whole-parasite based vaccine candidates critically depends on the parasite's potential to migrate in the human host. Key components of the parasite motility machinery (e.g. adhesive proteins, actin/myosin-based motor, geometrical properties) have been identified, however the regulation of this machinery is an unknown process. METHODS: In vitro microscopic live imaging of parasites in different formulations was performed and analysed, with the quantitative analysis software SMOOTIn vitro, their motility; their adherence capacity, movement pattern and velocity during forward locomotion. RESULTS: SMOOTIn vitro enabled the detailed analysis of the regulation of the motility machinery of Plasmodium berghei in response to specific (macro)molecules in the formulation. Albumin acted as an essential supplement to induce parasite attachment and movement. Glucose, salts and other whole serum components further increased the attachment rate and regulated the velocity of the movement. CONCLUSIONS: Based on the findings can be concluded that a complex interplay of albumin, glucose and certain salts and amino acids regulates parasite motility. Insights in parasite motility regulation by supplements in solution potentially provide a way to optimize the whole-parasite malaria vaccine formulation.


Assuntos
Meios de Cultura/química , Locomoção/efeitos dos fármacos , Plasmodium berghei/efeitos dos fármacos , Esporozoítos/fisiologia , Albuminas/farmacologia , Animais , Culicidae/parasitologia , Meios de Cultura/farmacologia , Feminino , Glucose/farmacologia , Microscopia Intravital , Malária/parasitologia , Camundongos , Plasmodium berghei/fisiologia , Software
12.
Artigo em Inglês | MEDLINE | ID: mdl-31058097

RESUMO

Transgenic malaria parasites expressing fluorescent and bioluminescent proteins are valuable tools to interrogate malaria-parasite biology and to evaluate drugs and vaccines. Using CRISPR/Cas9 methodology a transgenic Plasmodium falciparum (Pf) NF54 line was generated that expresses a fusion of mCherry and luciferase genes under the control of the Pf etramp10.3 gene promoter (line mCherry-luc@etramp10.3). Pf etramp10.3 is related to rodent Plasmodium uis4 and the uis4 promoter has been used to drive high transgene expression in rodent parasite sporozoites and liver-stages. We examined transgene expression throughout the complete life cycle and compared this expression to transgenic lines expressing mCherry-luciferase and GFP-luciferase under control of the constitutive gapdh and eef1a promoters. The mCherry-luc@etramp10.3 parasites express mCherry in gametocytes, sporozoites, and liver-stages. While no mCherry signal was detected in asexual blood-stage parasites above background levels, luciferase expression was detected in asexual blood-stages, as well as in gametocytes, sporozoites and liver-stages, with the highest levels of reporter expression detected in stage III-V gametocytes and in sporozoites. The expression of mCherry and luciferase in gametocytes and sporozoites makes this transgenic parasite line suitable to use in in vitro assays that examine the effect of transmission blocking inhibitors and to analyse gametocyte and sporozoite biology.


Assuntos
Genes Reporter , Luciferases/análise , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Proteínas Recombinantes/análise , Coloração e Rotulagem/métodos , Animais , Fusão Gênica Artificial , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Eritrócitos , Edição de Genes , Perfilação da Expressão Gênica , Humanos , Fígado/parasitologia , Luciferases/genética , Camundongos SCID , Proteínas Recombinantes/genética , Esporozoítos/genética , Esporozoítos/crescimento & desenvolvimento
13.
Artigo em Inglês | MEDLINE | ID: mdl-30073152

RESUMO

Protection against a malaria infection can be achieved by immunization with live-attenuated Plasmodium sporozoites and while the precise mechanisms of protection remain unknown, T cell responses are thought to be critical in the elimination of infected liver cells. In cancer immunotherapies, agonistic antibodies that target T cell surface proteins, such as CD27, OX40 (CD134), and 4-1BB (CD137), have been used to enhance T cell function by increasing co-stimulation. In this study, we have analyzed the effect of agonistic OX40 monoclonal antibody treatment on protective immunity induced in mice immunized with genetically attenuated parasites (GAPs). OX40 stimulation enhanced protective immunity after vaccination as shown by an increase in the number of protected mice and delay to blood-stage infection after challenge with wild-type sporozoites. Consistent with the enhanced protective immunity enforced OX40 stimulation resulted in an increased expansion of antigen-experienced effector (CD11ahiCD44hi) CD8+ and CD4+ T cells in the liver and spleen and also increased IFN-γ and TNF producing CD4+ T cells in the liver and spleen. In addition, GAP immunization plus α-OX40 treatment significantly increased sporozoite-specific IgG responses. Thus, we demonstrate that targeting T cell costimulatory receptors can improve sporozoite-based vaccine efficacy.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Imunidade Celular , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Receptores OX40/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Fígado/imunologia , Camundongos , Receptores OX40/imunologia , Baço/imunologia , Resultado do Tratamento , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
14.
Malar J ; 17(1): 288, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30092798

RESUMO

BACKGROUND: Rodent malaria parasites where the gene encoding circumsporozoite protein (CSP) has been replaced with csp genes from the human malaria parasites, Plasmodium falciparum or Plasmodium vivax, are used as pre-clinical tools to evaluate CSP vaccines in vivo. These chimeric rodent parasites produce sporozoites in Anopheles stephensi mosquitoes that are capable of infecting rodent and human hepatocytes. The availability of chimeric P. falciparum parasites where the pfcsp gene has been replaced by the pvcsp would open up possibilities to test P. vivax CSP vaccines in small scale clinical trials using controlled human malaria infection studies. METHODS: Using CRISPR/Cas9 gene editing two chimeric P. falciparum parasites, were generated, where the pfcsp gene has been replaced by either one of the two major pvcsp alleles, VK210 or VK247. In addition, a P. falciparum parasite line that lacks CSP expression was also generated. These parasite lines have been analysed for sporozoite production in An. stephensi mosquitoes. RESULTS: The two chimeric Pf-PvCSP lines exhibit normal asexual and sexual blood stage development in vitro and produce sporozoite-containing oocysts in An. stephensi mosquitoes. Expression of the corresponding PvCSP was confirmed in oocyst-derived Pf-PvCSP sporozoites. However, most oocysts degenerate before sporozoite formation and sporozoites were not found in either the mosquito haemocoel or salivary glands. Unlike the chimeric Pf-PvCSP parasites, oocysts of P. falciparum parasites lacking CSP expression do not produce sporozoites. CONCLUSIONS: Chimeric P. falciparum parasites expressing P. vivax circumsporozoite protein fail to produce salivary gland sporozoites. Combined, these studies show that while PvCSP can partially complement the function of PfCSP, species-specific features of CSP govern full sporozoite maturation and development in the two human malaria parasites.


Assuntos
Anopheles/parasitologia , Quimera/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Esporozoítos/fisiologia , Animais , Expressão Gênica , Plasmodium vivax/genética , Proteínas de Protozoários/metabolismo , Glândulas Salivares/parasitologia
15.
Mol Biochem Parasitol ; 224: 44-49, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30053393

RESUMO

The transmission-blocking vaccine candidate Pfs48/45 from the human malaria parasite Plasmodium falciparum is known to be difficult to express in heterologous systems, either as full-length protein or as correctly folded protein fragments that retain conformational epitopes. In this study we express full-length Pfs48/45 in the rodent parasite P. berghei. Pfs48/45 is expressed as a transgene under control of the strong P. berghei schizont-specific msp1 gene promoter (Pfs48/45@PbMSP1). Pfs48/45@PbMSP1 schizont-infected red blood cells produced full-length Pfs48/45 and the structural integrity of Pfs48/45 was confirmed using a panel of conformation-specific monoclonal antibodies that bind to different Pfs48/45 epitopes. Sera from mice immunized with transgenic Pfs48/45@PbMSP1 schizonts showed strong transmission-reducing activity in mosquitoes infected with P. falciparum using standard membrane feeding. These results demonstrate that transgenic rodent malaria parasites expressing human malaria antigens may be used as means to evaluate immunogenicity and functionality of difficult to express malaria vaccine candidate antigens.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas Recombinantes/imunologia , Animais , Antígenos de Protozoários/biossíntese , Antígenos de Protozoários/genética , Modelos Animais de Doenças , Transmissão de Doença Infecciosa/prevenção & controle , Expressão Gênica , Malária/prevenção & controle , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Transgenes
16.
Sci Rep ; 7(1): 10372, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871201

RESUMO

In humans and murine models of malaria, intradermal immunization (ID-I) with genetically attenuated sporozoites that arrest in liver induces lower protective immunity than intravenous immunization (IV-I). It is unclear whether this difference is caused by fewer sporozoites migrating into the liver or by suboptimal hepatic and injection site-dependent immune responses. We therefore developed a Plasmodium yoelii immunization/boost/challenge model to examine parasite liver loads as well as hepatic and lymph node immune responses in protected and unprotected ID-I and IV-I animals. Despite introducing the same numbers of genetically attenuated parasites in the liver, ID-I resulted in lower sterile protection (53-68%) than IV-I (93-95%). Unprotected mice developed less sporozoite-specific CD8+ and CD4+ effector T-cell responses than protected mice. After immunization, ID-I mice showed more interleukin-10-producing B and T cells in livers and skin-draining lymph nodes, but fewer hepatic CD8 memory T cells and CD8+ dendritic cells compared to IV-I mice. Our results indicate that the lower protection efficacy obtained by intradermal sporozoite administration is not linked to low hepatic parasite numbers as presumed before, but correlates with a shift towards regulatory immune responses. Overcoming these immune suppressive responses is important not only for live-attenuated malaria vaccines but also for other live vaccines administered in the skin.


Assuntos
Fígado/parasitologia , Malária/imunologia , Malária/parasitologia , Carga Parasitária , Plasmodium/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Humanos , Imunização , Estágios do Ciclo de Vida , Fígado/imunologia , Contagem de Linfócitos , Camundongos , Parasitemia/parasitologia , Plasmodium falciparum/imunologia
18.
PLoS One ; 11(12): e0168362, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27997583

RESUMO

The CRISPR/Cas9 system is a powerful genome editing technique employed in a wide variety of organisms including recently the human malaria parasite, P. falciparum. Here we report on further improvements to the CRISPR/Cas9 transfection constructs and selection protocol to more rapidly modify the P. falciparum genome and to introduce transgenes into the parasite genome without the inclusion of drug-selectable marker genes. This method was used to stably integrate the gene encoding GFP into the P. falciparum genome under the control of promoters of three different Plasmodium genes (calmodulin, gapdh and hsp70). These genes were selected as they are highly transcribed in blood stages. We show that the three reporter parasite lines generated in this study (GFP@cam, GFP@gapdh and GFP@hsp70) have in vitro blood stage growth kinetics and drug-sensitivity profiles comparable to the parental P. falciparum (NF54) wild-type line. Both asexual and sexual blood stages of the three reporter lines expressed GFP-fluorescence with GFP@hsp70 having the highest fluorescent intensity in schizont stages as shown by flow cytometry analysis of GFP-fluorescence intensity. The improved CRISPR/Cas9 constructs/protocol will aid in the rapid generation of transgenic and modified P. falciparum parasites, including those expressing different reporters proteins under different (stage specific) promoters.


Assuntos
Antimaláricos/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resistência a Medicamentos/genética , Edição de Genes , Genoma de Protozoário , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Isoquinolinas/farmacologia , Plasmodium falciparum/genética , Resistência a Medicamentos/efeitos dos fármacos , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/genética , Mutação
20.
PLoS Pathog ; 12(11): e1005917, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27851824

RESUMO

Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites.


Assuntos
Hepatócitos/virologia , Malária Falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Modelos Animais de Doenças , Eritrócitos/parasitologia , Imunofluorescência , Humanos , Fígado , Malária Falciparum/virologia , Camundongos , Família Multigênica , Organismos Geneticamente Modificados , Filogenia , Plasmodium falciparum , Transporte Proteico , Vacúolos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...