Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 23(1): 111, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641838

RESUMO

BACKGROUND: Sporozoites (SPZ), the infective form of Plasmodium falciparum malaria, can be inoculated into the human host skin by Anopheline mosquitoes. These SPZ migrate at approximately 1 µm/s to find a blood vessel and travel to the liver where they infect hepatocytes and multiply. In the skin they are still low in number (50-100 SPZ) and vulnerable to immune attack by antibodies and skin macrophages. This is why whole SPZ and SPZ proteins are used as the basis for most malaria vaccines currently deployed and undergoing late clinical testing. Mosquitoes typically inoculate SPZ into a human host between 14 and 25 days after their previous infective blood meal. However, it is unknown whether residing time within the mosquito affects SPZ condition, infectivity or immunogenicity. This study aimed to unravel how the age of P. falciparum SPZ in salivary glands (14, 17, or 20 days post blood meal) affects their infectivity and the ensuing immune responses. METHODS: SPZ numbers, viability by live/dead staining, motility using dedicated sporozoite motility orienting and organizing tool software (SMOOT), and infectivity of HC-04.j7 liver cells at 14, 17 and 20 days after mosquito feeding have been investigated. In vitro co-culture assays with SPZ stimulated monocyte-derived macrophages (MoMɸ) and CD8+ T-cells, analysed by flow cytometry, were used to investigate immune responses. RESULTS: SPZ age did not result in different SPZ numbers or viability. However, a markedly different motility pattern, whereby motility decreased from 89% at day 14 to 80% at day 17 and 71% at day 20 was observed (p ≤ 0.0001). Similarly, infectivity of day 20 SPZ dropped to ~ 50% compared with day 14 SPZ (p = 0.004). MoMɸ were better able to take up day 14 SPZ than day 20 SPZ (from 7.6% to 4.1%, p = 0.03) and displayed an increased expression of pro-inflammatory CD80, IL-6 (p = 0.005), regulatory markers PDL1 (p = 0.02), IL-10 (p = 0.009) and cytokines upon phagocytosis of younger SPZ. Interestingly, co-culture of these cells with CD8+ T-cells revealed a decreased expression of activation marker CD137 and cytokine IFNγ compared to their day 20 counterparts. These findings suggest that older (day 17-20) P. falciparum SPZ are less infectious and have decreased immune regulatory potential. CONCLUSION: Overall, this data is a first step in enhancing the understanding of how mosquito residing time affects P. falciparum SPZ and could impact the understanding of the P. falciparum infectious reservoir and the potency of whole SPZ vaccines.


Assuntos
Culicidae , Vacinas Antimaláricas , Malária Falciparum , Animais , Humanos , Esporozoítos , Linfócitos T CD8-Positivos , Envelhecimento , Plasmodium falciparum
2.
PLoS Pathog ; 16(9): e1008799, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898164

RESUMO

Professional antigen-presenting cells (APCs), like macrophages (Mϕs) and dendritic cells (DCs), are central players in the induction of natural and vaccine-induced immunity to malaria, yet very little is known about the interaction of SPZ with human APCs. Intradermal delivery of whole-sporozoite vaccines reduces their effectivity, possibly due to dermal immunoregulatory effects. Therefore, understanding these interactions could prove pivotal to malaria vaccination. We investigated human APC responses to recombinant circumsporozoite protein (recCSP), SPZ and anti-CSP opsonized SPZ both in monocyte derived MoDCs and MoMϕs. Both MoDCs and MoMϕs readily took up recCSP but did not change phenotype or function upon doing so. SPZ are preferentially phagocytosed by MoMϕs instead of DCs and phagocytosis greatly increased after opsonization. Subsequently MoMϕs show increased surface marker expression of activation markers as well as tolerogenic markers such as Programmed Death-Ligand 1 (PD-L1). Additionally they show reduced motility, produce interleukin 10 and suppressed interferon gamma (IFNγ) production by antigen specific CD8+ T cells. Importantly, we investigated phenotypic responses to SPZ in primary dermal APCs isolated from human skin explants, which respond similarly to their monocyte-derived counterparts. These findings are a first step in enhancing our understanding of pre-erythrocytic natural immunity and the pitfalls of intradermal vaccination-induced immunity.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Macrófagos/imunologia , Malária/imunologia , Plasmodium berghei/imunologia , Proteínas de Protozoários/imunologia , Pele/imunologia , Esporozoítos/imunologia , Animais , Células Cultivadas , Feminino , Humanos , Macrófagos/parasitologia , Malária/parasitologia , Camundongos , Pele/parasitologia
3.
Sci Rep ; 9(1): 13436, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530862

RESUMO

Given the number of global malaria cases and deaths, the need for a vaccine against Plasmodium falciparum (Pf) remains pressing. Administration of live, radiation-attenuated Pf sporozoites can fully protect malaria-naïve individuals. Despite the fact that motility of these attenuated parasites is key to their infectivity and ultimately protective efficacy, sporozoite motility in human tissue (e.g. skin) remains wholly uncharacterized to date. We show that the ability to quantitatively address the complexity of sporozoite motility in human tissue provides an additional tool in the development of attenuated sporozoite vaccines. We imaged Pf movement in the skin of its natural host and compared wild-type and radiation-attenuated GFP-expressing Pf sporozoites. Using custom image analysis software and human skin explants we were able to quantitatively study their key motility features. This head-to-head comparison revealed that radiation attenuation impaired the capacity of sporozoites to vary their movement angle, velocity and direction, promoting less refined movement patterns. Understanding and overcoming these changes in motility will contribute to the development of an efficacious attenuated parasite malaria vaccine.


Assuntos
Plasmodium falciparum/efeitos da radiação , Pele/parasitologia , Esporozoítos/patogenicidade , Esporozoítos/efeitos da radiação , Animais , Anopheles/parasitologia , Proteínas de Fluorescência Verde/genética , Interações Hospedeiro-Parasita , Humanos , Processamento de Imagem Assistida por Computador , Organismos Geneticamente Modificados , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Software
4.
Theranostics ; 9(10): 2768-2778, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244921

RESUMO

Introduction: The skin stage of malaria is a vital and vulnerable migratory life stage of the parasite. It has been characterised in rodent models, but remains wholly uninvestigated for human malaria parasites. To enable in depth analysis of not genetically modified (non-GMO) Plasmodium falciparum (Pf) sporozoite behaviour in human skin, we devised a labelling technology (Cy5M2, targeting the sporozoite mitochondrion) that supports tracking of individual non-GMO sporozoites in human skin. Methods: Sporozoite labelling with Cy5M2 was performed in vitro as well as via the feed of infected Anopheles mosquitos. Labelling was validated using confocal microscopy and flow cytometry and the fitness of labelled sporozoites was determined by analysis of infectivity to human hepatocytes in vitro, and in vivo in a rodent infection model. Using confocal video microscopy and custom software, single-sporozoite tracking studies in human skin-explants were performed. Results: Both in vitro and in mosquito labelling strategies yielded brightly fluorescent sporozoites of three different Plasmodium species. Cy5M2 uptake colocalized with MitoTracker® green and could be blocked using the known Translocator protein (TSPO)-inhibitor PK11195. This method supported the visualization and subsequent quantitative analysis of the migration patterns of individual non-GMO Pf sporozoites in human skin and did not affect the fitness of sporozoites. Conclusions: The ability to label and image non-GMO Plasmodium sporozoites provides the basis for detailed studies on the human skin stage of malaria with potential for in vivo translation. As such, it is an important tool for development of vaccines based on attenuated sporozoites and their route of administration.


Assuntos
Carbocianinas/metabolismo , Corantes Fluorescentes/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Pele/parasitologia , Coloração e Rotulagem/métodos , Animais , Modelos Animais de Doenças , Hepatócitos/parasitologia , Humanos , Camundongos , Microscopia Confocal , Microscopia de Vídeo , Modelos Teóricos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium yoelii/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento
5.
Malar J ; 18(1): 155, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046772

RESUMO

BACKGROUND: The protective efficacy of the most promising malaria whole-parasite based vaccine candidates critically depends on the parasite's potential to migrate in the human host. Key components of the parasite motility machinery (e.g. adhesive proteins, actin/myosin-based motor, geometrical properties) have been identified, however the regulation of this machinery is an unknown process. METHODS: In vitro microscopic live imaging of parasites in different formulations was performed and analysed, with the quantitative analysis software SMOOTIn vitro, their motility; their adherence capacity, movement pattern and velocity during forward locomotion. RESULTS: SMOOTIn vitro enabled the detailed analysis of the regulation of the motility machinery of Plasmodium berghei in response to specific (macro)molecules in the formulation. Albumin acted as an essential supplement to induce parasite attachment and movement. Glucose, salts and other whole serum components further increased the attachment rate and regulated the velocity of the movement. CONCLUSIONS: Based on the findings can be concluded that a complex interplay of albumin, glucose and certain salts and amino acids regulates parasite motility. Insights in parasite motility regulation by supplements in solution potentially provide a way to optimize the whole-parasite malaria vaccine formulation.


Assuntos
Meios de Cultura/química , Locomoção/efeitos dos fármacos , Plasmodium berghei/efeitos dos fármacos , Esporozoítos/fisiologia , Albuminas/farmacologia , Animais , Culicidae/parasitologia , Meios de Cultura/farmacologia , Feminino , Glucose/farmacologia , Microscopia Intravital , Malária/parasitologia , Camundongos , Plasmodium berghei/fisiologia , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...