Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16519, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019952

RESUMO

Incidental capture of non-target species poses a pervasive threat to many marine species, with sometimes devastating consequences for both fisheries and conservation efforts. Because of the well-known importance of vocalizations in cetaceans, acoustic deterrents have been extensively used for these species. In contrast, acoustic communication for sea turtles has been considered negligible, and this question has been largely unexplored. Addressing this challenge therefore requires a comprehensive understanding of sea turtles' responses to sensory signals. In this study, we scrutinized the avenue of auditory cues, specifically the natural sounds produced by green turtles (Chelonia mydas) in Martinique, as a potential tool to reduce bycatch. We recorded 10 sounds produced by green turtles and identified those that appear to correspond to alerts, flight or social contact between individuals. Subsequently, these turtle sounds-as well synthetic and natural (earthquake) sounds-were presented to turtles in known foraging areas to assess the behavioral response of green turtles to these sounds. Our data highlighted that the playback of sounds produced by sea turtles was associated with alert or increased the vigilance of individuals. This therefore suggests novel opportunities for using sea turtle sounds to deter them from fishing gear or other potentially harmful areas, and highlights the potential of our research to improve sea turtles populations' conservation.


Assuntos
Tartarugas , Vocalização Animal , Animais , Tartarugas/fisiologia , Vocalização Animal/fisiologia , Conservação dos Recursos Naturais/métodos , Som
2.
Animals (Basel) ; 14(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396564

RESUMO

An adult female Lepidochelys kempii was found trapped in drifting sargassum south of Martinique; this is the southernmost report of this taxon in the Lesser Antilles arc. Determining the limits of distribution and the existence of possible sympatry between L. kempii and L. olivacea in certain subregions of the Caribbean has been hindered by numerous misidentifications. We review the available data and propose a new distribution map in the Caribbean, which can serve as a basis for future studies.

3.
Mol Ecol ; 32(3): 628-643, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336814

RESUMO

Hybridization is known to be part of many species' evolutionary history. Sea turtles have a fascinating hybridization system in which species separated by as much as 43 million years are still capable of hybridizing. Indeed, the largest nesting populations in Brazil of loggerheads (Caretta caretta) and hawksbills (Eretmochelys imbricata) have a high incidence of hybrids between these two species. A third species, olive ridleys (Lepidochelys olivacea), is also known to hybridize although at a smaller scale. Here, we used restriction site-associated DNA sequencing (RAD-Seq) markers, mitogenomes, and satellite-telemetry to investigate the patterns of hybridization and introgression in the Brazilian sea turtle population and their relationship with the migratory behaviours between feeding and nesting aggregations. We also explicitly test if the mixing of two divergent genomes in sea turtle hybrids causes mitochondrial paternal leakage. We developed a new species-specific PCR-assay capable of detecting mitochondrial DNA (mtDNA) inheritance from both parental species and performed ultra-deep sequencing to estimate the abundance of each mtDNA type. Our results show that all adult hybrids are first generation (F1) and most display a loggerhead migratory behaviour. We detected paternal leakage in F1 hybrids and different proportions of mitochondria from maternal and paternal species. Although previous studies showed no significant fitness decrease in hatchlings, our results support genetically-related hybrid breakdown possibly caused by cytonuclear incompatibility. Further research on hybrids from other populations in addition to Brazil and between different species will show if backcross inviability and mitochondrial paternal leakage is observed across sea turtle species.


Assuntos
DNA Mitocondrial , Tartarugas , Animais , DNA Mitocondrial/genética , Tartarugas/genética , Mitocôndrias/genética , Evolução Biológica , Reação em Cadeia da Polimerase
4.
PLoS One ; 17(8): e0265849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35925903

RESUMO

An increasing number of marine animals are equipped with biologgers, to study their physiology, behaviour and ecology, often for conservation purposes. To minimise the impacts of biologgers on the animals' welfare, the Refinement principle from the Three Rs framework (Replacement, Reduction, Refinement) urges to continuously test and evaluate new and updated biologging protocols. Here, we propose alternative and promising techniques for emperor penguin (Aptenodytes forsteri) capture and on-site logger deployment that aim to mitigate the potential negative impacts of logger deployment on these birds. We equipped adult emperor penguins for short-term (GPS, Time-Depth Recorder (TDR)) and long-term (i.e. planned for one year) deployments (ARGOS platforms, TDR), as well as juvenile emperor penguins for long-term deployments (ARGOS platforms) in the Weddell Sea area where they had not yet been studied. We describe and qualitatively evaluate our protocols for the attachment of biologgers on-site at the colony, the capture of the animals and the recovery of the devices after deployment. We report unprecedented recaptures of long-term equipped adult emperor penguins (50% of equipped individuals recaptured after 290 days). Our data demonstrate that the traditional technique of long-term attachment by gluing the biologgers directly to the back feathers causes excessive feather breakage and the loss of the devices after a few months. We therefore propose an alternative method of attachment for back-mounted devices. This technique led to successful year-round deployments on 37.5% of the equipped juveniles. Finally, we also disclose the first deployments of leg-bracelet mounted TDRs on emperor penguins. Our findings highlight the importance of monitoring potential impacts of biologger deployments on the animals and the need to continue to improve methods to minimize disturbance and enhance performance and results.


Assuntos
Spheniscidae , Animais , Plumas , Spheniscidae/fisiologia
5.
Ecohealth ; 19(2): 190-202, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35665871

RESUMO

Fibropapillomatosis (FP) threatens the survival of green turtle (Chelonia mydas) populations at a global scale, and human activities are regularly pointed as causes of high FP prevalence. However, the association of ecological factors with the disease's severity in complex coastal systems has not been well established and requires further studies. Based on a set of 405 individuals caught over ten years, this preliminary study provides the first insight of FP in Martinique Island, which is a critical development area for immature green turtles. Our main results are: (i) 12.8% of the individuals were affected by FP, (ii) FP has different prevalence and temporal evolution between very close sites, (iii) green turtles are more frequently affected on the upper body part such as eyes (41.4%), fore flippers (21.9%), and the neck (9.4%), and (iv) high densities of individuals are observed on restricted areas. We hypothesise that turtle's aggregation enhances horizontal transmission of the disease. FP could represent a risk for immature green turtles' survival in the French West Indies, a critical development area, which replenishes the entire Atlantic population. Continuing scientific monitoring is required to identify which factors are implicated in this panzootic disease and ensure the conservation of the green turtle at an international scale.


Assuntos
Tartarugas , Animais , Martinica/epidemiologia , Prevalência
6.
Animals (Basel) ; 12(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35203228

RESUMO

Monitoring reproductive outputs of sea turtles is difficult, as it requires a large number of observers patrolling extended beaches every night throughout the breeding season with the risk of missing nesting individuals. We introduce the first automatic method to remotely record the reproductive outputs of green turtles (Chelonia mydas) using accelerometers. First, we trained a fully convolutional neural network, the V-net, to automatically identify the six behaviors shown during nesting. With an accuracy of 0.95, the V-net succeeded in detecting the Egg laying process with a precision of 0.97. Then, we estimated the number of laid eggs from the predicted Egg laying sequence and obtained the outputs with a mean relative error of 7% compared to the observed numbers in the field. Based on deployment of non-invasive and miniature loggers, the proposed method should help researchers monitor nesting sea turtle populations. Furthermore, its use can be coupled with the deployment of accelerometers at sea during the intra-nesting period, from which behaviors can also be estimated. The knowledge of the behavior of sea turtle on land and at sea during the entire reproduction period is essential to improve our knowledge of this threatened species.

7.
R Soc Open Sci ; 7(5): 200139, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32537218

RESUMO

The identification of sea turtle behaviours is a prerequisite to predicting the activities and time-budget of these animals in their natural habitat over the long term. However, this is hampered by a lack of reliable methods that enable the detection and monitoring of certain key behaviours such as feeding. This study proposes a combined approach that automatically identifies the different behaviours of free-ranging sea turtles through the use of animal-borne multi-sensor recorders (accelerometer, gyroscope and time-depth recorder), validated by animal-borne video-recorder data. We show here that the combination of supervised learning algorithms and multi-signal analysis tools can provide accurate inferences of the behaviours expressed, including feeding and scratching behaviours that are of crucial ecological interest for sea turtles. Our procedure uses multi-sensor miniaturized loggers that can be deployed on free-ranging animals with minimal disturbance. It provides an easily adaptable and replicable approach for the long-term automatic identification of the different activities and determination of time-budgets in sea turtles. This approach should also be applicable to a broad range of other species and could significantly contribute to the conservation of endangered species by providing detailed knowledge of key animal activities such as feeding, travelling and resting.

8.
Sensors (Basel) ; 20(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486068

RESUMO

Here we propose a new machine learning algorithm for classification of human activities by means of accelerometer and gyroscope signals. Based on a novel hierarchical system of logistic regression classifiers and a relatively small set of features extracted from the filtered signals, the proposed algorithm outperformed previous work on the DaLiAc (Daily Life Activity) and mHealth datasets. The algorithm also represents a significant improvement in terms of computational costs and requires no feature selection and hyper-parameter tuning. The algorithm still showed a robust performance with only two (ankle and wrist) out of the four devices (chest, wrist, hip and ankle) placed on the body (96.8% vs. 97.3% mean accuracy for the DaLiAc dataset). The present work shows that low-complexity models can compete with heavy, inefficient models in classification of advanced activities when designed with a careful upstream inspection of the data.


Assuntos
Acelerometria , Atividades Cotidianas , Aprendizado de Máquina , Dispositivos Eletrônicos Vestíveis , Algoritmos , Humanos , Punho
9.
Biol Open ; 8(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31757806

RESUMO

The change of animal biometrics (body mass and body size) can reveal important information about their living environment as well as determine the survival potential and reproductive success of individuals and thus the persistence of populations. However, weighing individuals like marine turtles in the field presents important logistical difficulties. In this context, estimating body mass (BM) based on body size is a crucial issue. Furthermore, the determinants of the variability of the parameters for this relationship can provide information about the quality of the environment and the manner in which individuals exploit the available resources. This is of particular importance in young individuals where growth quality might be a determinant of adult fitness. Our study aimed to validate the use of different body measurements to estimate BM, which can be difficult to obtain in the field, and explore the determinants of the relationship between BM and size in juvenile green turtles. Juvenile green turtles were caught, measured, and weighed over 6 years (2011-2012; 2015-2018) at six bays to the west of Martinique Island (Lesser Antilles). Using different datasets from this global database, we were able to show that the BM of individuals can be predicted from body measurements with an error of less than 2%. We built several datasets including different morphological and time-location information to test the accuracy of the mass prediction. We show a yearly and north-south pattern for the relationship between BM and body measurements. The year effect for the relationship of BM and size is strongly correlated with net primary production but not with sea surface temperature or cyclonic events. We also found that if the bay locations and year effects were removed from the analysis, the mass prediction degraded slightly but was still less than 3% on average. Further investigations of the feeding habitats in Martinique turtles are still needed to better understand these effects and to link them with geographic and oceanographic conditions.

10.
Sci Rep ; 9(1): 14392, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591419

RESUMO

Understanding the population composition and dynamics of migratory megafauna at key developmental habitats is critical for conservation and management. The present study investigated whether differential recovery of Caribbean green turtle (Chelonia mydas) rookeries influenced population composition at a major juvenile feeding ground in the southern Caribbean (Lac Bay, Bonaire, Caribbean Netherlands) using genetic and demographic analyses. Genetic divergence indicated a strong temporal shift in population composition between 2006-2007 and 2015-2016 (ϕST = 0.101, P < 0.001). Juvenile recruitment (<75.0 cm straight carapace length; SCL) from the north-western Caribbean increased from 12% to 38% while recruitment from the eastern Caribbean region decreased from 46% to 20% between 2006-2007 and 2015-2016. Furthermore, the product of the population growth rate and adult female abundance was a significant predictor for population composition in 2015-2016. Our results may reflect early warning signals of declining reproductive output at eastern Caribbean rookeries, potential displacement effects of smaller rookeries by larger rookeries, and advocate for genetic monitoring as a useful method for monitoring trends in juvenile megafauna. Furthermore, these findings underline the need for adequate conservation of juvenile developmental habitats and a deeper understanding of the interactions between megafaunal population dynamics in different habitats.


Assuntos
Ecossistema , Tartarugas/crescimento & desenvolvimento , Animais , Conservação dos Recursos Naturais , Variação Genética , Dinâmica Populacional , Tartarugas/genética
11.
Ecol Evol ; 8(24): 12790-12802, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619583

RESUMO

Although it is commonly assumed that female sea turtles always return to the beach they hatched, the pathways they use during the years preceding their first reproduction and their natal origins are most often unknown, as it is the case for juvenile green turtles found in Martinique waters in the Caribbean. Given the oceanic circulation of the Guiana current flowing toward Martinique and the presence of important nesting sites for this species in Suriname and French Guiana, we may assume that a large proportion of the juvenile green turtles found in Martinique are originating from the Suriname-French Guiana beaches. To confirm this hypothesis, we performed mixed stock analysis (MSA) on 40 green turtles sampled in Martinique Island and satellite tracked 31 juvenile green turtles tagged in Martinique to (a) assess their natal origin and (b) identify their destination. Our results from MSA confirm that these juveniles are descendant from females laying on several Caribbean and Atlantic beaches, mostly from Suriname and French Guiana, but also from more southern Brazilian beaches. These results were confirmed by the tracking data as the 10 turtles leaving Martinique headed across the Caribbean-Atlantic region in six different directions and 50% of these turtles reached the Brazilian foraging grounds used by the adult green turtles coming from French Guiana. One turtle left the French Guianan coast to perform the first transatlantic migration ever recorded in juvenile green turtles, swimming toward Guinea-Bissau, which is the most important nesting site for green turtles along the African coast. The extensive movements of the migrant turtles evidenced the crossing of international waters and more than 25 exclusive economic zones, reinforcing the need for an international cooperative network to ensure the conservation of future breeders in this endangered species.

12.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(2): 197-207, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26679241

RESUMO

The green turtle Chelonia mydas undertakes wide-ranging migrations between feeding and nesting sites, resulting in mixing and isolation of genetic stocks. We used mtDNA control region to characterize the genetic composition, population structure, and natal origins of C. mydas in the West Atlantic Ocean, at one feeding ground (State of Rio de Janeiro, Brazil), and three Caribbean nesting grounds (French Guiana, Guadeloupe, and Suriname). The feeding ground presented considerable frequency of common haplotypes from the South Atlantic, whereas the nesting sites presented a major contribution of the most common haplotype from the Caribbean. MSA revealed multiple origins of individuals at the feeding ground, notably from Ascension Island, Guinea Bissau, and French Guiana. This study enables a better understanding of the dispersion patterns and highlights the importance of connecting both nesting and feeding areas. Effective conservation initiatives need to encompass these ecologically and geographically distinct sites as well as those corridors connecting them.


Assuntos
DNA Mitocondrial , Variação Genética , Genética Populacional , Tartarugas/genética , Animais , Oceano Atlântico , Brasil , Feminino , Fluxo Gênico , Genoma Mitocondrial , Haplótipos , Filogeografia , Análise de Sequência de DNA
13.
PLoS One ; 10(9): e0137340, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26398528

RESUMO

In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration.


Assuntos
Migração Animal , Tartarugas/fisiologia , Animais , Oceano Atlântico , Mergulho , Ecossistema , Feminino , Herbivoria , Hidrodinâmica , Comportamento de Nidação , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA