Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 481(19): 1329-1347, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39136178

RESUMO

Hydrogen peroxide (H2O2) transport by aquaporins (AQP) is a critical feature for cellular redox signaling. However, the H2O2 permeation mechanism through these channels remains poorly understood. Through functional assays, two Plasma membrane Intrinsic Protein (PIP) AQP from Medicago truncatula, MtPIP2;2 and MtPIP2;3 have been identified as pH-gated channels capable of facilitating the permeation of both water (H2O) and H2O2. Employing a combination of unbiased and enhanced sampling molecular dynamics simulations, we investigated the key barriers and translocation mechanisms governing H2O2 permeation through these AQP in both open and closed conformational states. Our findings reveal that both H2O and H2O2 encounter their primary permeation barrier within the selectivity filter (SF) region of MtPIP2;3. In addition to the SF barrier, a second energetic barrier at the NPA (asparagine-proline-alanine) region that is more restrictive for the passage of H2O2 than for H2O, was found. This behavior can be attributed to a dissimilar geometric arrangement and hydrogen bonding profile between both molecules in this area. Collectively, these findings suggest mechanistic heterogeneity in H2O and H2O2 permeation through PIPs.


Assuntos
Aquaporinas , Peróxido de Hidrogênio , Simulação de Dinâmica Molecular , Proteínas de Plantas , Água , Peróxido de Hidrogênio/metabolismo , Aquaporinas/metabolismo , Aquaporinas/química , Aquaporinas/genética , Água/metabolismo , Água/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Medicago truncatula/metabolismo , Medicago truncatula/genética , Membrana Celular/metabolismo , Ligação de Hidrogênio
2.
FEBS J ; 289(1): 246-261, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34293244

RESUMO

Plant PIP aquaporins play a central role in controlling plant water status. The current structural model for PIP pH-gating states that the main pH sensor is located in loopD and that all the mobile cytosolic elements participate in a complex interaction network that ensures the closed structure. However, the precise participation of the last part of the C-terminal domain (CT) in PIP pH gating remains unknown. This last part has not been resolved in PIP crystal structures and is a key difference between PIP1 and PIP2 paralogues. Here, by a combined experimental and computational approach, we provide data about the role of CT in pH gating of Beta vulgaris PIP. We demonstrate that the length of CT and the positive charge located among its last residues modulate the pH at which the open/closed transition occurs. We also postulate a molecular-based mechanism for the differential pH sensing in PIP homo- or heterotetramers by performing atomistic molecular dynamics simulations (MDS) on complete models of PIP tetramers. Our findings show that the last part of CT can affect the environment of loopD pH sensors in the closed state. Results presented herein contribute to the understanding of how the characteristics of CT in PIP channels play a crucial role in determining the pH at which water transport through these channels is blocked, highlighting the relevance of the differentially conserved very last residues in PIP1 and PIP2 paralogues.


Assuntos
Aquaporinas/genética , Transporte Biológico/genética , Proteínas de Membrana/genética , Proteínas de Plantas/genética , Aquaporinas/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Multimerização Proteica , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA