Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(5): e1010471, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35512020

RESUMO

The ability to treat severe viral infections is limited by our understanding of the mechanisms behind virus-induced immunopathology. While the role of type I interferons (IFNs) in early control of viral replication is clear, less is known about how IFNs can regulate the development of immunopathology and affect disease outcomes. Here, we report that absence of type I IFN receptor (IFNAR) is associated with extensive immunopathology following mucosal viral infection. This pathology occurred independent of viral load or type II immunity but required the presence of macrophages and IL-6. The depletion of macrophages and inhibition of IL-6 signaling significantly abrogated immunopathology. Tissue destruction was mediated by macrophage-derived matrix metalloproteinases (MMPs), as MMP inhibition by doxycycline and Ro 28-2653 reduced the severity of tissue pathology. Analysis of post-mortem COVID-19 patient lungs also displayed significant upregulation of the expression of MMPs and accumulation of macrophages. Overall, we demonstrate that IFNs inhibit macrophage-mediated MMP production to prevent virus-induced immunopathology and uncover MMPs as a therapeutic target towards viral infections.


Assuntos
COVID-19 , Interferon Tipo I , Infecções por Orthomyxoviridae , Humanos , Interleucina-6/metabolismo , Macrófagos/metabolismo , Proteólise
2.
iScience ; 24(6): 102619, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34159300

RESUMO

Despite the remarkable success of chimeric antigen receptor (CAR)-T cells against hematologic malignancies, severe off-tumor effects have constrained their use against solid tumors. Recently, CAR-engineered natural killer (NK) cells have emerged as an effective and safe alternative. Here, we demonstrate that HER2 CAR-expression in NK cells from healthy donors and patients with breast cancer potently enhances their anti-tumor functions against various HER2-expressing cancer cells, regardless of MHC class I expression. Moreover, HER2 CAR-NK cells exert higher cytotoxicity than donor-matched HER2 CAR-T cells against tumor targets. Importantly, unlike CAR-T cells, HER2 CAR-NK cells do not elicit enhanced cytotoxicity or inflammatory cytokine production against non-malignant human lung epithelial cells with basal HER2 expression. Further, HER2 CAR-NK cells maintain high cytotoxic function in the presence of immunosuppressive factors enriched in solid tumors. These results show that CAR-NK cells may be a highly potent and safe source of immunotherapy in the context of solid tumors.

3.
J Immunother Cancer ; 9(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479024

RESUMO

Lung cancer remains the leading cause of cancer death worldwide despite the significant progress made by immune checkpoint inhibitors, including programmed death receptor-1 (PD1)/PD ligand 1 (PDL1)-blockade therapy. PD1/PDL1-blockade has achieved unprecedented tumor regression in some patients with advanced lung cancer. However, the majority of patients fail to respond to PD1/PDL1 inhibitors. The high rate of therapy non-response results from insufficient PDL1 expression on most patients' tumors and the presence of further immunosuppressive mechanisms in the tumor microenvironment. Here, we sensitize non-responding tumors from patients with lung cancer to PD1-blockade therapy using highly cytotoxic expanded natural killer (NK) cells. We uncover that NK cells expanded from patients with lung cancer dismantle the immunosuppressive tumor microenvironment by maintaining strong antitumor activity against both PDL1+ and PDL1- patient tumors. In the process, through a contact-independent mechanism involving interferon γ, expanded NK cells rescued tumor killing by exhausted endogenous TILs and upregulated the tumor proportion score of PDL1 across patient tumors. In contrast, unexpanded NK cells, which are susceptible to tumor-induced immunosuppression, had no effect on tumor PDL1. As a result, combined treatment of expanded NK cells and PD1-blockade resulted in robust synergistic tumor destruction of initially non-responding patient tumors. Thus, expanded NK cells may overcome the critical roadblocks to extending the prodigious benefits of PD1-blockade therapy to more patients with lung cancer and other tumor types.


Assuntos
Antígeno B7-H1/metabolismo , Técnicas de Cocultura/métodos , Inibidores de Checkpoint Imunológico/farmacologia , Células Matadoras Naturais/citologia , Neoplasias Pulmonares/imunologia , Células A549 , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Células K562 , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral
5.
Front Immunol ; 10: 1261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214198

RESUMO

NK cells are a key antiviral component of the innate immune response to HSV-2, particularly through their production of IFN-γ. It is still commonly thought that type I IFN activates NK cell function; however, rather than requiring the type I IFN receptor themselves, we have previously found that type I IFN activates NK cells through an indirect mechanism involving inflammatory monocytes and IL-18. Here, we further show that direct action of type I IFN on NK cells, rather than inducing IFN-γ, negatively regulates its production during HSV-2 infection and cytokine stimulation. During infection, IFN-γ is rapidly induced from NK cells at day 2 post-infection and then immediately downregulated at day 3 post-infection. We found that this downregulation of IFN-γ release was not due to a loss of NK cells at day 3 post-infection, but negatively regulated through IFN signaling on NK cells. Absence of IFNAR on NK cells led to a significantly increased level of IFN-γ compared to WT NK cells after HSV-2 infection in vitro. Further, priming of NK cells with type I IFN was able to suppress cytokine-induced IFN-γ production from both human and mouse NK cells. We found that this immunosuppression was not mediated by IL-10. Rather, we found that type I IFN induced a significant increase in Axl expression on human NK cells. Overall, our data suggests that type I IFN negatively regulates NK cell IFN-γ production through a direct mechanism in vitro and during HSV-2 infection.


Assuntos
Interferon gama/biossíntese , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Regulação da Expressão Gênica , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 2/fisiologia , Humanos , Imunofenotipagem , Interleucina-10/biossíntese , Contagem de Linfócitos , Camundongos , Camundongos Transgênicos , Receptor de Interferon alfa e beta/genética
6.
Sci Rep ; 9(1): 7631, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113974

RESUMO

Most currently available vaccines, particularly live vaccines, require the cold chain, as vaccine efficacy can be significantly hampered if they are not stored in a temperature range of 2-8 °C at all times. This necessity places a tremendous financial and logistical burden on vaccination programs, particularly in the developing world. The development of thermally stable vaccines can greatly alleviate this problem and, in turn, increase vaccine accessibility worldwide. In this paper, we detail a simple and cost-effective method for stabilizing live vaccines that uses FDA-approved materials. To this end, we dried enveloped DNA (Herpes Simplex Virus type 2) and RNA (Influenza A virus) viral vaccines in a pullulan and trehalose mixture. The results of these studies showed that the live-attenuated HSV-2 vaccine retained its efficacy for at least 2 months of storage at 40 °C, while the inactivated influenza vaccine was able to retain its immunogenicity for at least 3 months of storage at 40 °C. This work presents a simple approach that allows thermo-sensitive vaccines to be converted into thermo-stable vaccines that do not require refrigeration, thus contributing to the improvement of vaccine deployment throughout the world.


Assuntos
Vacinas contra o Vírus do Herpes Simples/química , Ácidos Nucleicos Imobilizados/química , Vacinas contra Influenza/química , Membranas Artificiais , Potência de Vacina , Animais , Chlorocebus aethiops , Custos e Análise de Custo , DNA Viral/química , DNA Viral/imunologia , Cães , Vacinas contra o Vírus do Herpes Simples/economia , Vacinas contra o Vírus do Herpes Simples/imunologia , Ácidos Nucleicos Imobilizados/imunologia , Imunogenicidade da Vacina , Vacinas contra Influenza/economia , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Viral/química , RNA Viral/imunologia , Açúcares/química , Células Vero
7.
Cytokine ; 124: 154439, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-29908921

RESUMO

Despite effective new treatments for Hepatitis C virus (HCV) infection, development of drug resistance, safety concerns and cost are remaining challenges. More importantly, there is no vaccine available against hepatitis C infection. Recent data suggest that there is a strong correlation between spontaneous HCV clearance and human NK cell function, particularly IFN-γ production. Further, IL-15 has innate antiviral activity and is also one of the main factors that activates NK cells to produce IFN-γ. To examine whether IL-15 and IFN-γ have direct antiviral activity against HCV, Huh7.5 cells were treated with either IFN-γ or IL-15 prior to HCV infection. Our data demonstrate that IFN-γ and IL-15 block HCV replication in vitro. Additionally, we show that IL-15 and IFN-γ do not induce anti-HCV effects through the type I interferon signaling pathway or nitric oxide (NO) production. Instead, IL-15 and IFN-γ provide protection against HCV via the ERK pathway. Treatment of Huh7.5 cells with a MEK/ERK inhibitor abrogated the anti-HCV effects of IL-15 and IFN-γ and overexpression of ERK1 prevented HCV replication compared to control transfection. Our in vitro data support the hypothesis that early production of IL-15 and activation of NK cells in the liver lead to control of HCV replication.


Assuntos
Hepacivirus/fisiologia , Interferon gama/farmacologia , Interleucina-15/farmacologia , Células Matadoras Naturais/imunologia , Fígado/imunologia , Fígado/virologia , Sistema de Sinalização das MAP Quinases/imunologia , Replicação Viral , Antivirais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon Tipo I/metabolismo , Interferon Tipo I/farmacologia , Interferon-alfa/farmacologia , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/farmacologia , Regulação para Cima , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
8.
Cancer Immunol Res ; 6(10): 1174-1185, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30018043

RESUMO

Natural killer (NK) cells are useful for cancer immunotherapy and have proven clinically effective against hematologic malignancies. However, immunotherapies for poor prognosis solid malignancies, including ovarian cancer, have not been as successful due to immunosuppression by solid tumors. Although rearming patients' own NK cells to treat cancer is an attractive option, success of that strategy is limited by the impaired function of NK cells from cancer patients and by inhibition by self-MHC. In this study, we show that expansion converts healthy donor and immunosuppressed ovarian cancer patient NK cells to a cytotoxic CD56superbrightCD16+ subset with activation state and antitumor functions that increase with CD56 brightness. We investigated whether these expanded NK cells may overcome the limitations of autologous NK cell therapy against solid tumors. Peripheral blood- and ascites-derived NK cells from ovarian cancer patients were expanded and then adoptively transferred into cell-line and autologous patient-derived xenograft models of human ovarian cancer. Expanded ovarian cancer patient NK cells reduced the burden of established tumors and prolonged survival. These results suggest that CD56bright NK cells harbor superior antitumor function compared with CD56dim cells. Thus, NK cell expansion may overcome limitations on autologous NK cell therapy by converting the patient's NK cells to a cytotoxic subset that exerts a therapeutic effect against autologous tumor. These findings suggest that the value of expanded autologous NK cell therapy for ovarian cancer and other solid malignancies should be clinically assessed. Cancer Immunol Res; 6(10); 1174-85. ©2018 AACR.


Assuntos
Antígeno CD56/imunologia , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Receptores de IgG/imunologia , Animais , Ascite/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Humanos , Imunoterapia Adotiva , Camundongos Transgênicos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Immunol Immunother ; 67(4): 575-587, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29299659

RESUMO

Ovarian cancer (OC) is the leading cause of gynecological cancer-related death in North America. Most ovarian cancer patients (OCPs) experience disease recurrence after first-line surgery and chemotherapy; thus, there is a need for novel second-line treatments to improve the prognosis of OC. Although peripheral blood-derived NK cells are known for their ability to spontaneously lyse tumour cells without prior sensitization, ascites-derived NK cells (ascites-NK cells) isolated from OCPs exhibit inhibitory phenotypes, impaired cytotoxicity and may play a pro-tumourigenic role in cancer progression. Therefore, it is of interest to improve the cytotoxic effector function of impaired OCP ascites-NK cells at the tumour environment. We investigated the efficacy of using an artificial APC-based ex vivo expansion technique to generate cytotoxic, expanded NK cells from previously impaired OCP ascites-NK cells, for use in an autologous model of NK cell immunotherapy. We are the first to obtain a log-scale expansion of OCP ascites-NK cells that upregulate the surface expression of activating receptors NKG2D, NKp30, NKp44, produce robust amounts of anti-tumour cytokines in the presence of OC cells and mediate direct tumour cytotoxicity against ascites-derived, primary OC cells obtained from autologous patients. Our findings demonstrate that it is possible to generate cytotoxic OCP ascites-NK cells from previously impaired OCP ascites-NK cells, which presents a promising immunotherapeutic target for the second-line treatment of OC. Future work should focus on evaluating the in vivo efficacy of autologous NK cell immunotherapy through the intraperitoneal delivery of NK cell expansion factors to a preclinical xenograft mouse model of human OC.


Assuntos
Ascite/imunologia , Citotoxicidade Imunológica/imunologia , Imunoterapia , Células Matadoras Naturais/imunologia , Neoplasias Ovarianas/imunologia , Ascite/metabolismo , Proliferação de Células , Citocinas/metabolismo , Feminino , Humanos , Células Matadoras Naturais/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/terapia , Células Tumorais Cultivadas
10.
J Immunother ; 41(2): 64-72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29189387

RESUMO

With over 600,000 units of umbilical cord blood (CB) stored on a global scale, it is important to elucidate the therapeutic abilities of this cryopreserved reservoir. In the advancing field of natural killer (NK) cell cancer immunotherapy, CB has proven to be a promising and noninvasive source of therapeutic NK cells. Although studies have proven the clinical efficacy of using long-term cryopreserved CB in the context of hematopoietic stem cell transplantations, little is known about its use for the ex vivo expansion of effector immune cells. Therefore, our group sought to derive ex vivo-expanded NK cells from long-term cryopreserved CB, using an artificial antigen presenting cell-mediated expansion technique. We compared the expansion potential and antitumor effector function of CB-derived NK (CB-NK) cells expanded from fresh (n=4), short-term cryopreserved (<1-year old, n=5), and long-term cryopreserved (1-10-year old, n=5) CB. Here, we demonstrated it is possible to obtain an exponential amount of expanded CB-NK cells from long-term cryopreserved CB. Ex vivo-expanded CB-NK cells had an increased surface expression of activating markers and showed potent antitumor function by producing robust levels of proinflammatory cytokines, interferon-γ, and tumor necrosis factor-α. Moreover, expanded CB-NK cells (n=3-5) demonstrated cytotoxicity towards primary breast cancer cells (n=2) derived from a triple-negative breast cancer and an estrogen receptor-positive/progesterone receptor-positive breast cancer patient. Long-term cryopreservation had no effect on the expansion potential or effector function of expanded CB-NK cells. Therefore, we propose that long-term cryopreserved CB remains clinically useful for the ex vivo expansion of therapeutic NK cells.


Assuntos
Neoplasias da Mama/imunologia , Citotoxicidade Imunológica , Sangue Fetal/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Criopreservação , Citocinas/metabolismo , Humanos , Ativação Linfocitária
11.
Sci Rep ; 7(1): 15263, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127409

RESUMO

Approximately 40% of HIV-1 infections occur in the female genital tract (FGT), primarily through heterosexual transmission. FGT factors determining outcome of HIV-1 exposure are incompletely understood, limiting prevention strategies. Here, humanized NOD-Rag1-/- γc-/- mice differentially reconstituted with human CD34+ -enriched hematopoietic stem cells (Hu-mice), were used to assess target cell frequency and viral inoculation dose as determinants of HIV-1 infection following intravaginal (IVAG) challenge. Results revealed a significant correlation between HIV-1 susceptibility and hCD45+ target cells in the blood, which correlated with presence of target cells in the FGT, in the absence of local inflammation. HIV-1 plasma load was associated with viral dose at inoculation and frequency of target cells. Events following IVAG HIV-1 infection; viral dissemination and CD4 depletion, were not affected by these parameters. Following IVAG inoculation, HIV-1 titres peaked, then declined in vaginal lavage while plasma showed a reciprocal pattern. The greatest frequency of HIV-1-infected (p24+) cells were found one week post-infection in the FGT versus blood and spleen, suggesting local viral amplification. Five weeks post-infection, HIV-1 disseminated into systemic tissues, in a dose-dependent manner, followed by depletion of hCD45+ CD3+ CD4+ cells. Results indicate target cell frequency in the Hu-mouse FGT is a key determinant of HIV-1 infection, which might provide a useful target for prophylaxis in women.


Assuntos
Infecções por HIV/transmissão , HIV-1/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Vagina/metabolismo , Carga Viral , Animais , Modelos Animais de Doenças , Feminino , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , Humanos , Antígenos Comuns de Leucócito/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Vagina/imunologia , Vagina/virologia
12.
Sci Rep ; 7(1): 12083, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935883

RESUMO

Adoptive immune cell therapy is emerging as a promising immunotherapy for cancer. Particularly, the adoptive transfer of NK cells has garnered attention due to their natural cytotoxicity against tumor cells and safety upon adoptive transfer to patients. Although strategies exist to efficiently generate large quantities of expanded NK cells ex vivo, it remains unknown whether these expanded NK cells can persist and/or proliferate in vivo in the absence of exogenous human cytokines. Here, we have examined the adoptive transfer of ex vivo expanded human cord blood-derived NK cells into humanized mice reconstituted with autologous human cord blood immune cells. We report that ex vivo expanded NK cells are able to survive and possibly proliferate in vivo in humanized mice without exogenous cytokine administration, but not in control mice that lack human immune cells. These findings demonstrate that the presence of autologous human immune cells supports the in vivo survival of ex vivo expanded human NK cells. These results support the application of ex vivo expanded NK cells in cancer immunotherapy and provide a translational humanized mouse model to test the lifespan, safety, and functionality of adoptively transferred cells in the presence of autologous human immune cells prior to clinical use.


Assuntos
Transferência Adotiva/métodos , Proliferação de Células , Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/transplante , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Células Cultivadas , Sangue Fetal/citologia , Humanos , Imunoterapia Adotiva/métodos , Células K562 , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/terapia
13.
Breast Cancer Res ; 19(1): 76, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28668076

RESUMO

BACKGROUND: Natural killer (NK) cells play a critical role in cancer immunosurveillance. Recent developments in NK cell ex-vivo expansion makes it possible to generate millions of activated NK cells from a small volume of peripheral blood. We tested the functionality of ex vivo expanded NK cells in vitro against breast cancer cell lines and in vivo using a xenograft mouse model. The study aim was to assess functionality and phenotype of expanded NK cells from breast cancer patients against breast cancer cell lines and autologous primary tumours. METHODS: We used a well-established NK cell co-culture system to expand NK cells ex vivo from healthy donors and breast cancer patients and examined their surface marker expression. Moreover, we tested the ability of expanded NK cells to lyse the triple negative breast cancer and HER2-positive breast cancer cell lines MDA-MB-231 and MDA-MB-453, respectively. We also tested their ability to prevent tumour growth in vivo using a xenograft mouse model. Finally, we tested the cytotoxicity of expanded NK cells against autologous and allogeneic primary breast cancer tumours in vitro. RESULTS: After 3 weeks of culture we observed over 1000-fold expansion of NK cells isolated from either breast cancer patients or healthy donors. We also showed that the phenotype of expanded NK cells is comparable between those from healthy donors and cancer patients. Moreover, our results confirm the ability of ex vivo expanded NK cells to lyse tumour cell lines in vitro. While the cell lines examined had differential sensitivity to NK cell killing we found this was correlated with level of major histocompatibility complex (MHC) class I expression. In our in vivo model, NK cells prevented tumour establishment and growth in immunocompromised mice. Finally, we showed that NK cells expanded from the peripheral blood of breast cancer patients show high cytotoxicity against allogeneic and autologous patient-derived tumour cells in vitro. CONCLUSION: NK cells from breast cancer patients can be expanded similarly to those from healthy donors, have a high cytotoxic ability against breast cancer cell lines and patient-derived tumour cells, and can be compatible with current cancer treatments to restore NK cell function in cancer patients.


Assuntos
Neoplasias da Mama/imunologia , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Animais , Biomarcadores , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Imunofenotipagem , Imunoterapia Adotiva , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Knockout , Receptor ErbB-2/metabolismo
14.
J Exp Med ; 214(4): 1153-1167, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28264883

RESUMO

The requirement of type I interferon (IFN) for natural killer (NK) cell activation in response to viral infection is known, but the underlying mechanism remains unclear. Here, we demonstrate that type I IFN signaling in inflammatory monocytes, but not in dendritic cells (DCs) or NK cells, is essential for NK cell function in response to a mucosal herpes simplex virus type 2 (HSV-2) infection. Mice deficient in type I IFN signaling, Ifnar-/- and Irf9-/- mice, had significantly lower levels of inflammatory monocytes, were deficient in IL-18 production, and lacked NK cell-derived IFN-γ. Depletion of inflammatory monocytes, but not DCs or other myeloid cells, resulted in lower levels of IL-18 and a complete abrogation of NK cell function in HSV-2 infection. Moreover, this resulted in higher susceptibility to HSV-2 infection. Although Il18-/- mice had normal levels of inflammatory monocytes, their NK cells were unresponsive to HSV-2 challenge. This study highlights the importance of type I IFN signaling in inflammatory monocytes and the induction of the early innate antiviral response.


Assuntos
Herpes Simples/imunologia , Interferon Tipo I/fisiologia , Interleucina-18/fisiologia , Células Matadoras Naturais/imunologia , Monócitos/fisiologia , Transdução de Sinais/fisiologia , Animais , Herpesvirus Humano 2/imunologia , Imunidade Inata , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/fisiologia , Interferon gama/biossíntese , Interleucina-15/fisiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/fisiologia
15.
Cytokine ; 95: 7-11, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28189043

RESUMO

Endotoxin, or LPS tolerance, is an immunomodulatory mechanism that results in a significantly diminished response to secondary LPS exposure, which may serve to protect the host against endotoxic shock. Type I interferons (IFNs) are cytokines released upon LPS binding to TLR4 and have been shown to have immunomodulatory properties. Due to this regulatory function of type I IFN, we aimed to investigate the role of type I IFN signalling in LPS tolerance. Our data suggests that type I IFN does not play a role in LPS tolerance in vitro, as both wild type and IFNAR1-/- peritoneal macrophages showed reduced cytokine production after secondary LPS exposure. Furthermore, both wild type and IFNAR1-/- mice were protected from a lethal dose of LPS after receiving three small doses to induce tolerance. However, IFNAR-/- mice seemed to recover faster than wild type mice, suggesting type I IFN signalling plays a detrimental role in LPS-induced sepsis. Although type I IFN may have a regulatory function in microbial infections, it does not seem to play a role in endotoxin tolerance. Type I IFN involvement in bacterial infection remains complex and further studies are needed to define the regulatory function of type I IFN signalling.


Assuntos
Interferon Tipo I/fisiologia , Lipopolissacarídeos/toxicidade , Choque Séptico/imunologia , Transdução de Sinais , Animais , Células Cultivadas , Tolerância a Medicamentos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética
16.
J Cancer Prev ; 22(4): 260-266, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29302585

RESUMO

High intensity interval training (HIIT) boosts natural killer (NK) cell number and activity in normal weight breast cancer patients; however, whether this occurs in obese individuals is not well established. The goal of this study was to determine whether HIIT effectively boosts NK cells as a therapeutic strategy against breast cancer in an obese mouse model and in overweight/obese women. Diet induced female C57Bl/6 obese mice were assigned to undergo HIIT for four weeks or remain sedentary. Female participants were subjected to a six weeks HIIT protocol. HIIT mice acclimatized to treadmill running were subsequently injected with 5 × 105 polyoma middle T (MT) breast cancer cells intravenously. NK cell number and activation were monitored using flow cytometry, and tumor burden or lipid content evaluated from histological lung and liver tissues, respectively. In both mice and humans, circulating NK cell number and activation (CD3-NK1.1+CD27+ and CD3-CD56+, respectively) markedly increased immediately after HIIT. HIIT obese mice had reduced lung tumor burden compared to controls following MT challenge, and had diminished hepatic lipid deposition despite minimal body weight loss. Our findings demonstrate that HIIT can benefit obese individuals by enhancing NK cell number and activity, reducing tumor burden, and enhancing metabolic health.

17.
J Leukoc Biol ; 101(4): 1045-1052, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27974365

RESUMO

Natural killer (NK) cells have an important role in mounting protective innate responses against genital herpes simplex virus type 2 (HSV-2) infections. However their role as effectors in adaptive immune responses against HSV-2 is unclear. Here, we demonstrate that NK cells from C57BL/6 mice in an ex vivo splenocyte culture produce significantly more interferon γ (IFN-γ) upon re-exposure to HSV-2 antigens in a mouse model of genital HSV-2 immunization. We find that naïve NK cells do not require any prior stimulation or priming to be activated to produce IFN-γ. Our results demonstrate that HSV-2-experienced CD4+ T cells have a crucial role in coordinating NK cell activation and that their presence during HSV-2 antigen presentation is required to activate NK cells in this model of secondary immune response. We also examined the requirement of cell-to-cell contacts for both CD4+ T cells and NK cells. NK cells are dependent on direct interactions with other HSV-2-experienced splenocytes, and CD4+ T cells need to be in close proximity to NK cells to activate them. This study revealed that NK cells do not exhibit any memory toward HSV-2 antigens and, in fact, require specific interactions with HSV-2-experienced CD4+ T cells to produce IFN-γ.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Herpesvirus Humano 2/imunologia , Memória Imunológica , Células Matadoras Naturais/imunologia , Animais , Feminino , Imunização , Interferon gama/biossíntese , Interleucina-2/metabolismo , Células Matadoras Naturais/citologia , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Baço/citologia
18.
J Leukoc Biol ; 101(1): 285-295, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27493241

RESUMO

The crosstalk between NK cells and M1 macrophages has a vital role in the protection against infections and tumor development. However, macrophages in the tumor resemble an M2 phenotype, and, at present, their effect on NK cells is less clear. This study investigated whether tumor-associated macrophages (TAMs) have a role in altering NK cell function and phenotype using in vitro cocultures of murine NK cells with peritoneal or bone marrow-derived, M2-polarized macrophages or TAMs isolated from spontaneous mouse breast tumors. We report here that both peritoneal and bone marrow-derived M2 macrophages, as well as TAMs, substantially inhibit NK cell activation and concordant cytotoxicity against tumor cells. The mechanism for this inhibition was found to require contact between the respective cell types. Both M2 macrophages and TAMs are producers of the immunosuppressive cytokine TGF-ß. The inhibition of TGF-ß restored the cytotoxicity of NK cells in contact with M2 macrophages, implicating TGF-ß in the mechanism for NK cell inhibition. In addition to affecting NK cell function, TAMs also induced a CD27lowCD11bhigh-exhausted NK cell phenotype, which corresponds with the reduced activation and cytotoxicity observed. This study reveals a novel implication of TAMs in the tumor-associated inhibition of NK cell function by demonstrating their capacity to directly alter NK cell cytotoxicity and phenotype in a contact-dependent mechanism involving TGF-ß. These findings identify the interaction between NK cells and TAMs as a prospective therapeutic target to enhance NK cell effector function for effective NK cell cancer therapies.


Assuntos
Comunicação Celular , Polaridade Celular , Células Matadoras Naturais/patologia , Macrófagos Peritoneais/patologia , Neoplasias/patologia , Animais , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Cocultura , Citotoxicidade Imunológica , Células Matadoras Naturais/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
19.
BMC Immunol ; 17(1): 18, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27307066

RESUMO

BACKGROUND: Humanized mouse models are an increasingly popular preclinical model to study the human immune response in a biological system. There are a variety of protocols to generate these mice, each differing in the strain of the recipient, source of hematopoietic stem cells, and mode of transplantation. Though there is well-documented reconstitution information regarding the spleen, blood, and bone marrow, there is little information regarding reconstitution of the lymph node and liver. In this report, we sought to compare reconstitution levels in a variety of immunological tissues, including the lymph node and liver, between mice engrafted intravenously as adults and intrahepatically in newborns. RESULTS: CD34+ cells were enriched from cord blood and transplanted intravenously into irradiated adult NOD-Rag1(-/-)IL2rγ(-/-) (NRG) mice or intra-hepatically into irradiated newborn NRG mice. At 9-28 weeks post-engraftment, immunological tissues were processed and analyzed for human lymphoid and myeloid subsets. Adult and newborn engrafted humanized mice were comparable in long-term reconstitution of human CD45 cells and subsequent lymphoid and myeloid subsets in the spleen, bone marrow, thymus, lymph node, and liver. Mice engrafted as newborns had a higher level of T-cells and a lower level of B-cells compared to mice engrafted as adults. We observed significant levels of human immune cell engraftment in both the lymph node and the liver, with a predominant adaptive immune population in both compartments. CONCLUSIONS: Human immune cells repopulate liver and mesenteric lymph nodes of NRG mice and can be used to study the human immune system in the gastrointestinal tract.


Assuntos
Envelhecimento/imunologia , Linfócitos B/fisiologia , Células-Tronco Hematopoéticas/imunologia , Fígado/fisiologia , Linfonodos/fisiologia , Linfócitos T/fisiologia , Animais , Animais Recém-Nascidos , Antígenos CD34/metabolismo , Autorrenovação Celular , Sobrevivência Celular , Células Cultivadas , Transplante de Células-Tronco Hematopoéticas , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Knockout , Quimeras de Transplante
20.
Cell Mol Immunol ; 13(5): 628-39, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26277898

RESUMO

Natural killer (NK) cells are innate immune cells with the ability to identify and eliminate transformed cells. However, within tumors, many studies have described NK cells as non-functional. The developmental stage of tumor-associated NK cells and how this may relate to functionality has not been explored. We examined the developmental state of NK cells from polyoma middle T antigen (pyMT) transgenic mouse (MMTV-pMT) breast tumors. In pyMT tumors, NK cells were immature as evidenced by their decreased expression of DX5 and their CD27(low)CD11b(low) phenotype. These immature NK cells also had increased expression of NKG2A and expressed low levels of NKp46, perforin, and granzyme B. In contrast, splenic NK cells isolated from the same mice maintained their maturity and their expression of activation markers. To delineate whether the tumor microenvironment directly alters NK cells, we adoptively transferred labeled NK cells and followed their activation status in both the spleen and the tumor. NK cells that arrived at the tumor had half the expression of NKp46 within three days of transfer in comparison to those which arrived at the spleen. In an effort to modify the tumor microenvironment and assess the plasticity of intratumoral NK cells, we treated pyMT tumors with IL-12 and anti-TGF-ß. After one week of treatment, the maturity of tumor-associated NK cells was increased; thus, indicating that these cells possess the ability to mature and become activated. A better understanding of how NK cells are modified by the tumor microenvironment will help to develop strategies aimed at bolstering immune responses against tumors.


Assuntos
Células Matadoras Naturais/patologia , Neoplasias Mamárias Animais/patologia , Microambiente Tumoral , Transferência Adotiva , Animais , Antígenos CD/metabolismo , Antígenos Ly/metabolismo , Antígenos Transformantes de Poliomavirus/metabolismo , Diferenciação Celular , Feminino , Granzimas/metabolismo , Interleucina-12/metabolismo , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Perforina/metabolismo , Fenótipo , Baço/patologia , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...