Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0135023, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646508

RESUMO

Assuring that cell therapy products are safe before releasing them for use in patients is critical. Currently, compendial sterility testing for bacteria and fungi can take 7-14 days. The goal of this work was to develop a rapid untargeted approach for the sensitive detection of microbial contaminants at low abundance from low volume samples during the manufacturing process of cell therapies. We developed a long-read sequencing methodology using Oxford Nanopore Technologies MinION platform with 16S and 18S amplicon sequencing to detect USP <71> organisms and other microbial species. Reads are classified metagenomically to predict the microbial species. We used an extreme gradient boosting machine learning algorithm (XGBoost) to first assess if a sample is contaminated, and second, determine whether the predicted contaminant is correctly classified or misclassified. The model was used to make a final decision on the sterility status of the input sample. An optimized experimental and bioinformatics pipeline starting from spiked species through to sequenced reads allowed for the detection of microbial samples at 10 colony-forming units (CFU)/mL using metagenomic classification. Machine learning can be coupled with long-read sequencing to detect and identify sample sterility status and microbial species present in T-cell cultures, including the USP <71> organisms to 10 CFU/mL. IMPORTANCE This research presents a novel method for rapidly and accurately detecting microbial contaminants in cell therapy products, which is essential for ensuring patient safety. Traditional testing methods are time-consuming, taking 7-14 days, while our approach can significantly reduce this time. By combining advanced long-read nanopore sequencing techniques and machine learning, we can effectively identify the presence and types of microbial contaminants at low abundance levels. This breakthrough has the potential to improve the safety and efficiency of cell therapy manufacturing, leading to better patient outcomes and a more streamlined production process.

2.
Lancet Rheumatol ; 5(3): e151-e165, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38251610

RESUMO

Systemic lupus erythematosus is a complex, systemic autoimmune disease characterised by immune dysregulation. Pathogenesis is multifactorial, contributing to clinical heterogeneity and posing challenges for diagnosis and treatment. Although strides in treatment options have been made in the past 15 years, with the US Food and Drug Administration approval of belimumab in 2011, there are still many patients who have inadequate responses to therapy. A better understanding of underlying disease mechanisms with a holistic and multiparametric approach is required to improve clinical assessment and treatment. This Review discusses the evolution of genomics, epigenomics, transcriptomics, and proteomics in the study of systemic lupus erythematosus and ways to amalgamate these silos of data with a systems-based approach while also discussing ways to strengthen the overall process. These mechanistic insights will facilitate the discovery of functionally relevant biomarkers to guide rational therapeutic selection to improve patient outcomes.


Assuntos
Inteligência Artificial , Lúpus Eritematoso Sistêmico , Estados Unidos , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Epigenômica , Perfilação da Expressão Gênica , Genômica
3.
Nat Commun ; 13(1): 6453, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307410

RESUMO

Cancer vaccines as immunotherapy for solid tumours are currently in development with promising results. We report a phase 1 study of Ad-sig-hMUC1/ecdCD40L (NCT02140996), an adenoviral-vector vaccine encoding the tumour-associated antigen MUC1 linked to CD40 ligand, in patients with advanced adenocarcinoma. The primary objective of this study is safety and tolerability. We also study the immunome in vaccinated patients as a secondary outcome. This trial, while not designed to determine clinical efficacy, reports an exploratory endpoint of overall response rate. The study meets its pre-specified primary endpoint demonstrating safety and tolerability in a cohort of 21 patients with advanced adenocarcinomas (breast, lung and ovary). The maximal dose of the vaccine is 1 ×1011 viral particles, with no dose limiting toxicities. All drug related adverse events are of low grades, most commonly injection site reactions in 15 (71%) patients. Using exploratory high-dimensional analyses, we find both quantitative and relational changes in the cancer immunome after vaccination. Our data highlights the utility of high-dimensional analyses in understanding and predicting effective immunotherapy, underscoring the importance of immune competency in cancer prognosis.


Assuntos
Adenocarcinoma , Vacinas Anticâncer , Feminino , Humanos , Ligante de CD40/genética , Ligante de CD40/metabolismo , Ligantes , Vacinas Anticâncer/efeitos adversos , Vetores Genéticos , Adenocarcinoma/tratamento farmacológico , Adenoviridae , Mucina-1/genética
4.
Nat Commun ; 13(1): 4067, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831417

RESUMO

Plasmodium falciparum has developed extensive mechanisms to evade host immune clearance. Currently, most of our understanding is based on in vitro studies of individual parasite variant surface antigens and how this relates to the processes in vivo is not well-understood. Here, we have used a humanized mouse model to identify parasite factors important for in vivo growth. We show that upregulation of the specific PfEMP1, VAR2CSA, provides the parasite with protection from macrophage phagocytosis and clearance in the humanized mice. Furthermore, parasites adapted to thrive in the humanized mice show reduced NK cell-mediated killing through interaction with the immune inhibitory receptor, LILRB1. Taken together, these findings reveal new insights into the molecular and cellular mechanisms that the parasite utilizes to coordinate immune escape in vivo. Identification and targeting of these specific parasite variant surface antigens crucial for immune evasion provides a unique approach for therapy.


Assuntos
Malária Falciparum , Plasmodium falciparum , Animais , Antígenos de Protozoários , Antígenos de Superfície/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Camundongos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
5.
Cell Rep ; 32(5): 107996, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755588

RESUMO

Southeast Asia has been the hotbed for the development of drug-resistant malaria parasites, including those with resistance to artemisinin combination therapy. While mutations in the kelch propeller domain (K13 mutations) are associated with artemisinin resistance, a range of evidence suggests that other factors are critical for the establishment and subsequent transmission of resistance in the field. Here, we perform a quantitative analysis of DNA damage and repair in the malaria parasite Plasmodium falciparum and find a strong link between enhanced DNA damage repair and artemisinin resistance. This experimental observation is further supported when variations in seven known DNA repair genes are found in resistant parasites, with six of these mutations being associated with K13 mutations. Our data provide important insights on confounding factors that are important for the establishment and spread of artemisinin resistance and may explain why resistance has not yet arisen in Africa.


Assuntos
Artemisininas/farmacologia , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , África , Sudeste Asiático , Resistência a Medicamentos/efeitos dos fármacos , Genótipo , Geografia , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Fenótipo , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/isolamento & purificação , Domínios Proteicos , Proteínas de Protozoários/genética
6.
Commun Biol ; 3(1): 351, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620892

RESUMO

The genomes of Plasmodium spp. encode a number of different multigene families that are thought to play a critical role for survival. However, with the exception of the P. falciparum var genes, very little is known about the biological roles of any of the other multigene families. Using the recently developed Selection Linked Integration method, we have been able to activate the expression of a single member of a multigene family of our choice in Plasmodium spp. from its endogenous promoter. We demonstrate the usefulness of this approach by activating the expression of a unique var, rifin and stevor in P. falciparum as well as yir in P. yoelii. Characterization of the selected parasites reveals differences between the different families in terms of mutual exclusive control, co-regulation, and host adaptation. Our results further support the application of the approach for the study of multigene families in Plasmodium and other organisms.


Assuntos
Eritrócitos/metabolismo , Regulação da Expressão Gênica , Malária Falciparum/genética , Família Multigênica , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Animais , Eritrócitos/parasitologia , Humanos , Malária Falciparum/parasitologia , Camundongos , Proteínas de Protozoários/genética
7.
PLoS Pathog ; 14(10): e1007298, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30286211

RESUMO

Natural killer (NK) cells provide the first line of defense against malaria parasite infection. However, the molecular mechanisms through which NK cells are activated by parasites are largely unknown, so is the molecular basis underlying the variation in NK cell responses to malaria infection in the human population. Here, we compared transcriptional profiles of responding and non-responding NK cells following exposure to Plasmodium-infected red blood cells (iRBCs) and identified MDA5, a RIG-I-like receptor involved in sensing cytosolic RNAs, to be differentially expressed. Knockout of MDA5 in responding human NK cells by CRISPR/cas9 abolished NK cell activation, IFN-γ secretion, lysis of iRBCs. Similarly, inhibition of TBK1/IKKε, an effector molecule downstream of MDA5, also inhibited activation of responding NK cells. Conversely, activation of MDA5 by liposome-packaged poly I:C restored non-responding NK cells to lyse iRBCs. We further show that microvesicles containing large parasite RNAs from iRBCs activated NK cells by fusing with NK cells. These findings suggest that NK cells are activated through the MDA5 pathway by parasite RNAs that are delivered to the cytoplasm of NK cells by microvesicles from iRBCs. The difference in MDA5 expression between responding and non-responding NK cells following exposure to iRBCs likely contributes to the variation in NK cell responses to malaria infection in the human population.


Assuntos
Micropartículas Derivadas de Células/imunologia , Eritrócitos/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Células Matadoras Naturais/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Sistemas CRISPR-Cas , Células Cultivadas , Citoplasma/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Helicase IFIH1 Induzida por Interferon/antagonistas & inibidores , Helicase IFIH1 Induzida por Interferon/genética , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/parasitologia , Ativação Linfocitária , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...