Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 29(7): 653-664, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35788183

RESUMO

Chitin is an essential component of the fungal cell wall. Chitin synthases (Chss) catalyze chitin formation and translocation across the membrane and are targets of antifungal agents, including nikkomycin Z and polyoxin D. Lack of structural insights into the action of these inhibitors on Chs has hampered their further development to the clinic. We present the cryo-EM structures of Chs2 from Candida albicans (CaChs2) in the apo, substrate-bound, nikkomycin Z-bound, and polyoxin D-bound states. CaChs2 adopts a unique domain-swapped dimer configuration where a conserved motif in the domain-swapped region controls enzyme activity. CaChs2 has a dual regulation mechanism where the chitin translocation tunnel is closed by the extracellular gate and plugged by a lipid molecule in the apo state to prevent non-specific leak. Analyses of substrate and inhibitor binding provide insights into the chemical logic of Chs inhibition, which can guide Chs-targeted antifungal development.


Assuntos
Candida albicans , Quitina Sintase , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Candida albicans/metabolismo , Quitina/metabolismo , Quitina Sintase/metabolismo
2.
Bio Protoc ; 11(8): e3995, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34124296

RESUMO

(1,3)-ß-d-Glucan synthase (GS) is an essential enzyme for fungal cell wall biosynthesis that catalyzes the synthesis of (1,3)-ß-d-glucan, a major and vital component of the cell wall. GS is a proven target of antifungal antibiotics including FDA-approved echinocandin derivatives; however, the function and mechanism of GS remain largely uncharacterized due to the absence of informative activity assays. Previously, a radioactive assay and reducing end modification have been used to characterize GS activity. The radioactive assay determines only the total amount of glucan formed through glucose incorporation and does not report the length of the polymers produced. The glucan length has been characterized by reducing end modification, but this method is unsuitable for mechanistic studies due to the very high detection limit of millimolar amounts and the labor intensiveness of the technique. Consequently, fundamental aspects of GS catalysis, such as the polymer length specificity, remain ambiguous. We have developed a size exclusion chromatography (SEC)-based method that allows detailed functional and mechanistic characterization of GS. The approach harnesses the pH-dependent solubility of (1,3)-ß-d-glucan, where (1,3)-ß-d-glucan forms water-soluble random coils under basic pH conditions, and can be analyzed by SEC using pulsed amperometric detection (PAD) and radioactivity counting (RC). This approach allows quantitative characterization of the total amount and length of glucan produced by GS with minimal workup and a d-glucose (Glc) detection limit of ~100 pmol. Consequently, this approach was successfully used for the kinetic characterization of GS, providing the first detailed mechanistic insight into GS catalysis. Due to its sensitivity, the assay is applicable to the characterization of GS from any fungi and can be adapted to study other polysaccharide synthases.

3.
Biochemistry ; 59(5): 682-693, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31899625

RESUMO

(1,3)-ß-d-Glucan synthase (GS) catalyzes formation of the linear (1,3)-ß-d-glucan in the fungal cell wall and is a target of clinically approved antifungal antibiotics. The catalytic subunit of GS, FKS protein, does not exhibit significant sequence homology to other glycosyltransferases, and thus, significant ambiguity about its catalytic mechanism remains. One of the major technical barriers in studying GS is the absence of activity assay methods that allow characterization of the lengths and amounts of (1,3)-ß-d-glucan due to its poor solubility in water and organic solvents. Here, we report a successful development of a novel GS activity assay based on size-exclusion chromatography coupled with pulsed amperometric detection and radiation counting (SEC-PAD-RC), which allows for the simultaneous characterization of the amount and length of the polymer product. The assay revealed that the purified yeast GS produces glucan with a length of 6550 ± 760 mer, consistent with the reported degree of polymerization of (1,3)-ß-d-glucan isolated from intact cells. Pre-steady state kinetic analysis revealed a highly efficient but rate-determining chain elongation rate of 51.5 ± 9.8 s-1, which represents the first observation of chain elongation by a nucleotide-sugar-dependent polysaccharide synthase. Coupling the SEC-PAD-RC method with substrate analogue mechanistic probes provided the first unambiguous evidence that GS catalyzes non-reducing end polymerization. On the basis of these observations, we propose a detailed model for the catalytic mechanism of GS. The approaches described here can be used to determine the mechanism of catalysis of other polysaccharide synthases.


Assuntos
Parede Celular/metabolismo , Glucosiltransferases/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanas/metabolismo , Biocatálise , Cromatografia em Gel , Glucosiltransferases/química , Cinética , Polimerização , Proteoglicanas , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Especificidade da Espécie , beta-Glucanas/química , beta-Glucanas/isolamento & purificação
4.
Biochemistry ; 57(1): 91-107, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29161034

RESUMO

The COPII coat complex, which mediates secretory cargo trafficking from the endoplasmic reticulum, is a key control point for subcellular protein targeting. Because misdirected proteins cannot function, protein sorting by COPII is critical for establishing and maintaining normal cell and tissue homeostasis. Indeed, mutations in COPII genes cause a range of human pathologies, including cranio-lenticulo-sutural dysplasia (CLSD), which is characterized by collagen trafficking defects, craniofacial abnormalities, and skeletal dysmorphology. Detailed knowledge of the COPII pathway is required to understand its role in normal cell physiology and to devise new treatments for disorders in which it is disrupted. However, little is known about how vertebrates dynamically regulate COPII activity in response to developmental, metabolic, or pathological cues. Several COPII proteins are modified by O-linked ß-N-acetylglucosamine (O-GlcNAc), a dynamic form of intracellular protein glycosylation, but the biochemical and functional effects of these modifications remain unclear. Here, we use a combination of chemical, biochemical, cellular, and genetic approaches to demonstrate that site-specific O-GlcNAcylation of COPII proteins mediates their protein-protein interactions and modulates cargo secretion. In particular, we show that individual O-GlcNAcylation sites of SEC23A, an essential COPII component, are required for its function in human cells and vertebrate development, because mutation of these sites impairs SEC23A-dependent in vivo collagen trafficking and skeletogenesis in a zebrafish model of CLSD. Our results indicate that O-GlcNAc is a conserved and critical regulatory modification in the vertebrate COPII-dependent trafficking pathway.


Assuntos
Acetilglucosamina/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Acilação , Animais , Linhagem Celular , Colágeno/metabolismo , Anormalidades Craniofaciais/metabolismo , Modelos Animais de Doenças , Glicosilação , Humanos , Organelas/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Vertebrados , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...