Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 828: 154543, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302016

RESUMO

Bio-electro-Fenton (BEF) processes have been widely studied in recent years to remove recalcitrant micropollutants from wastewater. Though promising, it still faces the critical challenge of residual iron and iron sludge in the treated effluent. Thus, an innovative medium-pressure ultraviolet-catalyzed bio-electrochemical system (MUBEC), in which medium-pressure ultraviolet was employed as an alternative to iron for in-situ H2O2 activation, was developed for the removal of recalcitrant micropollutants. The influence of operating parameters, including initial catholyte pH, cathodic aeration rate, and input voltage, on the system performance, was explored. Results indicated that complete reduction of 10 mg L-1 of model micro-pollutants ibuprofen (IBU) and carbamazepine (CBZ) was achieved at pH 3, with an aeration rate of 1 mL min-1 and a voltage of 0.3 V, following pseudo-first-order kinetics. Moreover, potential transformation pathways and the associated intermediates during the degradation were deduced and detected, respectively. Thus, the MUBEC system shows the potential for the efficient and cost-effective degradation of recalcitrant micropollutants from wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Catálise , Peróxido de Hidrogênio/metabolismo , Ferro , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 416: 125905, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492840

RESUMO

Bio-electro-Fenton is emerging as an alternative technology for the efficient and cost-effective removal of refractory micropollutants. Though promising, there are still several challenges that limit its wide application, including acidic operating conditions (pH at 2-3), the addition of supporting electrolytes (e.g., Na2SO4), and the issue of iron sludge generation. To address these challenges, a novel hybrid persulfate-photo-bioelectrochemical (PPBEC) system is proposed to remove model micropollutants (carbamazepine and clorfibric acid), from secondary effluent at low persulfate (PS) dosage and neutral pH. The effect of crucial operating parameters on the process was studied, including input voltage, cathodic aeration velocity, and PS dose. Under optimal conditions (0.6 V, 0.005 mL min-1 mL-1 and 1 mM), the PPBEC system achieved approx. 0.56-1.71 times greater micropollutant removal with 93% lower energy consumption when compared to the individual processes (UV/PS and PBEC). The improved performance was attributed to a faster production of sulfate radicals by UV irradiation, hydrogen peroxide activation and single-electron reduction, and hydroxyl radicals generated by UV irradiation. Furthermore, the transformation products of carbamazepine and clorfibric acid were identified and the probable pathways are proposed. Finally, the ecotoxicity of the PPBEC treated effluent was assessed by using Vibrio Fischeri, which exhibited a non-toxic effect.


Assuntos
Poluentes Químicos da Água , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 769: 144960, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33477039

RESUMO

This article studies the ecotoxicity of 3,3',4',5-tetrachlorosalicylanilide (TCSA) using different bioassays and examines its fate in activated sludge batch experiments. Despite of the common use of TCSA as chemical uncoupler in wastewater treatment systems and as preservative in several products, limited data has been published for its ecotoxicity, while no information is available for its biodegradation. Among different bioassays, the highest toxicity of TSCA was noticed for Daphna magna (48-h LC50: 0.054 mg L-1), followed by Vibrio fischeri (15-min EC50: 0.392 mg L-1), Lemna minor, (7-d EC50: 5.74 mg L-1) and activated sludge respiration rate (3-h EC50: 31.1 mg L-1). The half-life of TSCA was equal to 7.3 h in biodegradation experiments with activated sludge, while use of mass balances showed that 90% of this compound is expected to be removed in an aerobic activated sludge system, mainly due to biodegradation. A preliminary risk assessment of TSCA using the Risk Quotient methodology showed possible ecological threat in rivers where wastewater is diluted up to 100-fold. Comparison with the structurally similar 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan, TCS) showed that both compounds have similar biodegradation potential and seem to cause analogous toxicity to Vibrio fischeri and activated sludge. Specifically, TCS was biodegraded quite rapidly by activated sludge (half-life: 6.2 h), while EC50 values equal to 0.134 mg L-1 and 39.9 mg L-1 were calculated for Vibrio fischeri, and activated sludge respiration rate. Future research should focus on monitoring of TSCA concentrations in the environment and study its effects in long-term toxicity and bioaccumulation tests.


Assuntos
Triclosan , Poluentes Químicos da Água , Biodegradação Ambiental , Salicilanilidas , Esgotos , Triclosan/análise , Triclosan/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-32668774

RESUMO

In recent years, peracetic acid (PAA) has gained a lot of attention as an alternative disinfectant to chlorine-based disinfectants in the water industry. Commercial PAA solutions contain both PAA and hydrogen peroxide (HP), and the degradation of HP is slower than PAA when it is used for disinfection. All previous toxicity studies have been based on commercial PAA, and variance in toxicity values have been observed due to different PAA:HP ratios. In this study, the ecotoxicity of pure PAA was studied, eliminating HP from the commercial PAA mixture using potassium permanganate. Ecotoxicity data were obtained by conducting a battery of ecotoxicity tests: bioassays using Vibrio fischeri (V. fischeri), Daphnia magna (D. magna), and Pseudokirchneriella subcapitata (P. subcapitata). The effect concentration (EC50) of pure PAA was 0.84 (a 95% confidence interval of 0.78-0.91) mg/L for V. fischeri and 2.46 (2.35-2.58) mg/L for P. subcapitata, whereas the lethal concentration (LC50) was 0.74 (0.55-0.91) mg/L for D. magna. Compared to this, our previous study found that the EC50 values of commercial PAA towards V. fischeri and P. subcapitata were 0.42 (0.41-0.44) and 1.38 (0.96-1.99) mg/L, respectively, which were lower than pure PAA, whilst the LC50 for D. magna was 0.78 (0.58-0.95) mg/L. These results showed that pure PAA was less toxic to the most commonly used aquatic species for toxicity tests compared to commercial PAA, except for D. magna.


Assuntos
Desinfetantes , Ácido Peracético , Poluentes Químicos da Água , Aliivibrio fischeri , Animais , Daphnia , Desinfetantes/toxicidade , Peróxido de Hidrogênio/toxicidade , Ácido Peracético/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-32605258

RESUMO

Peracetic acid (PAA) water solutions is applied for disinfection of industry systems, food products and non-potable water. Commercially available peracetic acid is always supplied mixed with hydrogen peroxide (H2O2). H2O2 degrade slower than the peracetic acid which creates a need to quantify both peroxides separately to gauge the disinfection power of the solution and the residuals. Two combinations of colorimetric reactions are presented that allows simultaneous quantification at the mg·L-1 level used in disinfection liquids and water disinfection. The first dichromic reaction use titanium oxide oxalate (TiO-Ox) which only react with H2O2 followed by addition of N,N-diethyl-p-phenylenediamine with iodide (DPD/I-) and the concentrations are read by simultaneously measuring the absorbance at 400 and 515 nm. Limit of quantification (LOQ) and maximal concentration determined was 4.6 µg·L-1 and 2.5 mg·L-1 for PAA and 9.1 µg·L-1 and 5 mg·L-1 for H2O2. The two color reactions didn't interfere with each other when the reagent addition was consecutive. Another combination of colorimetric reaction also used where TiO-Ox was used to first measure H2O2 at 400 nm, before addition of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS)) and reading the absorbance at 405 nm. ABTS changes the absorbance at 405 nm necessitating the two measurements be done separately. LOQ and maximal concentration determined using ABTS colorimetric assay was 42.5 µg·L-1 and 30 mg·L-1 for PAA and for titanium oxide oxalate colorimetric assay was 12.7 µg·L-1 and 75 mg·L-1 for H2O2. Both methods tested satisfactory in typical water samples (Tap, sea, lake, and biological treated sewage) spiked with peracetic acid and H2O2, separately.


Assuntos
Desinfetantes , Ácido Peracético , Colorimetria , Desinfecção , Peróxido de Hidrogênio , Água , Purificação da Água
6.
Sci Total Environ ; 677: 1-8, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31051379

RESUMO

The ecotoxicological evaluation of combined sewer overflow (CSO) disinfectants, with their degradation products, is important for ensuring safe use. For this form of toxicity, data for organisms representing different trophic levels are needed. We studied the toxicity of the alternative disinfectants peracetic acid (PAA), performic acid (PFA) and chlorine dioxide (ClO2) and their degradation products hydrogen peroxide (H2O2) and chlorite (ClO2-) on Vibrio fischeri and Daphnia magna. ClO2 was more toxic to D. magna (EC50 < 0.09 mg/L) and PFA was most toxic to V. fischeri (EC50 0.24 mg/L). EC50 of PFA, PAA, ClO2, H2O2 and ClO2- on D. magna were 0.85, 0.78, <0.09, 3.46 and 0.36 mg/L, respectively. Similarly, EC50 of PFA, PAA, ClO2, H2O2 and ClO2- on V. fischeri were 0.24, 0.42, 1.10, 5.67 and 30.93 mg/L, respectively. For both PFA and ClO2, the degradation in water was faster than for PAA, H2O2 and chlorite. Using these data together with literature values, we derived environmental quality standards. By combining these with typical concentrations of disinfectants used for CSOs, we estimated the dilution required for discharging CSOs after disinfection, which can be used for quick assessment of the environmental feasibility of disinfection systems at specific CSO sites. Minimal dilutions in the receiving water, in the orders of 44, 70 or 138-fold, are needed for ClO2, PFA and PAA, respectively. This highlights PFA as the most widely applicable disinfectant, taking into account both its efficiency and the lower risk of unwanted environmental effects.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Desinfetantes/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cloretos/toxicidade , Compostos Clorados/toxicidade , Desinfecção , Formiatos/toxicidade , Peróxido de Hidrogênio/toxicidade , Óxidos/toxicidade , Ácido Peracético/toxicidade , Esgotos
7.
Environ Sci Pollut Res Int ; 25(33): 32851-32859, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28210951

RESUMO

Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.


Assuntos
Desinfecção/métodos , Ácido Peracético/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Regiões Árticas , Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Dinamarca , Desinfetantes/química , Desinfetantes/farmacologia , Enterococcus/efeitos dos fármacos , Enterococcus/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Groenlândia , Processos Heterotróficos , Ácido Peracético/farmacologia , Raios Ultravioleta
8.
Int J Hyg Environ Health ; 220(3): 570-574, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27964897

RESUMO

Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO2) as well as two by-products of their use: hydrogen peroxide (H2O2) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC50 values ranged from 0.16 to 2.9mg/L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased in the same order as the toxicity decrease. This indicates that even though ClO2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water.


Assuntos
Cloretos/toxicidade , Compostos Clorados/toxicidade , Clorófitas/efeitos dos fármacos , Desinfetantes/toxicidade , Formiatos/toxicidade , Peróxido de Hidrogênio/toxicidade , Óxidos/toxicidade , Ácido Peracético/toxicidade , Poluentes Químicos da Água/toxicidade , Clorófitas/crescimento & desenvolvimento
9.
Water Res ; 83: 293-302, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26164801

RESUMO

Hospital wastewater represents a significant input of pharmaceuticals into municipal wastewater. As Moving Bed Biofilm Reactors (MBBRs) appear to remove organic micro-pollutants, hospital wastewater was treated with a pilot plant consisting of three MBBRs in series. The removal of pharmaceuticals was studied in two experiments: 1) A batch experiment where pharmaceuticals were spiked to each reactor and 2) a continuous flow experiment at native concentrations. DOC removal, nitrification as well as removal of pharmaceuticals (including X-ray contrast media, ß-blockers, analgesics and antibiotics) occurred mainly in the first reactor. In the batch experiment most of the compounds followed a single first-order kinetics degradation function, giving degradation rate constants ranged from 5.77 × 10(-3) to 4.07 h(-1), from -5.53 × 10(-3) to 9.24 × 10(-1) h(-1) and from 1.83 × 10(-3) to 2.42 × 10(-1) h(-1) for first, second and third reactor respectively. Generally, the highest removal rate constants were found in the first reactor while the lowest were found in the third one. This order was inverted for most compounds, when the removal rate constants were normalized to biomass, indicating that the last tank had the most effective biofilms. In the batch experiment, 21 out of 26 compounds were assessed to be degraded with more than 20% within the MBBR train. In the continuous flow experiment the measured removal rates were lower than those estimated from the batch experiments.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Recuperação e Remediação Ambiental/métodos , Preparações Farmacêuticas/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Dinamarca , Hospitais , Projetos Piloto , Águas Residuárias/análise
10.
Sci Total Environ ; 530-531: 383-392, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26057543

RESUMO

Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, ß-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h(-1), from 0 to 7.78 × 10(-1)h(-1), from 0 to 7.86 × 10(-1)h(-1) and from 0 to 1.07 × 10(-1)h(-1) for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase during the first treatment step. Such increase could be attributed to de-conjugation or formation from other metabolites.


Assuntos
Preparações Farmacêuticas/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Hospitais , Águas Residuárias/química , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 490: 1065-72, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24918873

RESUMO

We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L(-1) PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2-4 mg L(-1) PFA; with a 20 min contact time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event, the disinfection efficiencies were confirmed and degradation rates were slightly higher than predicted in simulated CSO.


Assuntos
Desinfetantes/análise , Desinfecção/métodos , Formiatos/análise , Ácido Peracético/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise , Drenagem Sanitária/métodos , Águas Residuárias/química , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...