Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38632201

RESUMO

COVID-19 has been a significant global concern due to its contagious nature. In May 2021, Taiwan experienced a severe outbreak, leading the government to enforce strict Pandemic Alert Level 3 restrictions in order to curtail its spread. Although previous studies in Taiwan have examined the effects of these measures on air quality, further research is required to compare different time periods and assess the health implications of reducing particulate matter during the Level 3 lockdown. Herein, we analyzed the mass concentrations, chemical compositions, seasonal variations, sources, and potential health risks of PM1.0 and PM2.5 in Central Taiwan before and during the Level 3 lockdown. As a result, coal-fired boilers (47%) and traffic emissions (53%) were identified as the predominant sources of polycyclic aromatic hydrocarbons (PAHs) in PM1.0, while in PM2.5, the dominant sources of PAHs were coal-fired boilers (28%), traffic emissions (50%), and iron and steel sinter plants (22.1%). Before the pandemic, a greater value of 20.9 ± 6.92 µg/m3 was observed for PM2.5, which decreased to 15.3 ± 2.51 µg/m3 during the pandemic due to a reduction in industrial and anthropogenic emissions. Additionally, prior to the pandemic, PM1.0 had a contribution rate of 79% to PM2.5, which changed to 89% during the pandemic. Similarly, BaPeq values in PM2.5 exhibited a comparable trend, with PM1.0 contributing 86% and 65% respectively. In both periods, the OC/EC ratios for PM1.0 and PM2.5 were above 2, due to secondary organic compounds. The incremental lifetime cancer risk (ILCR) of PAHs in PM2.5 decreased by 4.03 × 10-5 during the pandemic, with PM1.0 contributing 73% due to reduced anthropogenic activities.

2.
J Am Chem Soc ; 146(18): 12386-12394, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38500309

RESUMO

Difluoromethylation reactions are increasingly important for the creation of fluorine-containing heterocycles, which are core groups in a diverse range of biologically and pharmacologically active ingredients. Ideally, this typically challenging reaction could be performed photocatalytically under mild conditions. To achieve this separation of redox processes would be required for the efficient generation of difluoromethyl radicals and the reduction of oxygen. A covalent organic framework photocatalytic material was, therefore, designed with dual reactive centers. Here, anthracene was used as a reduction site and benzothiadiazole was used as an oxidation site, distributed in a tristyryl triazine framework. Efficient charge separation was ensured by the superior electron-donating and -accepting abilities of the dual centers, creating long-lived photogenerated electron-hole pairs. Photocatalytic difluoromethylation of 16 compounds with high yields and remarkable functional group tolerance was demonstrated; compounds included bioactive molecules such as xanthine and uracil. The structure-function relationship of the dual-active-center photocatalyst was investigated through electron spin resonance, femtosecond transient absorption spectroscopy, and density functional theory calculations.

3.
Chemosphere ; 353: 141573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428532

RESUMO

Over the last two decades, Taiwan has effectively diminished atmospheric concentrations of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) through the adept utilization of advanced technologies and the implementation of air pollution control devices. Despite this success, there exists a dearth of data regarding the levels of other PM2.5-bound organic pollutants and their associated health risks. To address this gap, our study comprehensively investigates the spatial and seasonal variations, potential sources, and health risks of PCDD/Fs, Polychlorinated biphenyls (PCBs), and Polychlorinated naphthalene (PCNs) in Northern and Central Taiwan. Sampling collections were conducted at three specific locations, including six municipal waste incinerators in Northern Taiwan, as well as a traffic and an industrial site in Central Taiwan. As a result, the highest mean values of PM2.5 (20.3-39.6 µg/m3) were observed at traffic sites, followed by industrial sites (14.4-39.3 µg/m3), and the vicinity of the municipal waste incinerator (12.4-29.4 µg/m3). Additionally, PCDD/Fs and PCBs exhibited discernible seasonal fluctuations, displaying higher concentrations in winter (7.53-11.9 and 0.09-0.12 fg I-TEQWHO/m3) and spring (7.02-13.7 and 0.11-0.16 fg I-TEQWHO/m3) compared to summer and autumn. Conversely, PCNs displayed no significant seasonal variations, with peak values observed in winter (0.05-0.10 fg I-TEQWHO/m3) and spring (0.03-0.08 fg I-TEQWHO/m3). Utilizing a Positive Matrix Factorization (PMF) model, sintering plants emerged as the predominant contributors to PCDD/Fs, constituting 77.9% of emissions. Woodchip boilers (68.3%) and municipal waste incinerators (21.0%) were identified as primary contributors to PCBs, while municipal waste incinerators (64.6%) along with a secondary copper and a copper sludge smelter (22.1%) were the principal sources of PCNs. Moreover, the study specified that individuals aged 19-70 in Northern Taiwan and those under the age of 12 years in Central Taiwan were found to have a significantly higher cancer risk, with values ranging from 9.26 x 10-9-1.12 x 10-7 and from 2.50 x 10-8-2.08 x 10-7respectively.


Assuntos
Poluentes Atmosféricos , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Humanos , Dibenzodioxinas Policloradas/análise , Bifenilos Policlorados/análise , Poluentes Orgânicos Persistentes , Poluentes Atmosféricos/análise , Dibenzofuranos , Taiwan , Cobre , Monitoramento Ambiental , Incineração , Material Particulado , Dibenzofuranos Policlorados/análise
4.
Small ; : e2311817, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461534

RESUMO

The atomically dispersed Fe-N4 active site presents enormous potential for various renewable energy conversions. Despite its already remarkable catalytic performance, the local atomic microenvironment of each Fe atom can be regulated to further enhance its efficiency. Herein, a novel conceptual strategy that utilizes a simple salt-template polymerization method to simultaneously adjust the first coordination shell (Fe-N3 S1 ) and second coordination shell (C-S-C, a structure similar to thiophene) of Fe-N4 isolated atoms is proposed. Theoretical studies suggest that this approach can redistribute charge density in the MN4 moiety, lowering the d-band center of the metal site. This weakens the binding of oxygenated intermediates, enhancing oxygen reduction reaction (ORR) activity when compared to only implementing coordination shell regulation. Based on the above discovery, a single Fe atom electrocatalyst with the optimal Fe-N3 S1 -S active moiety incorporated in nitrogen, sulfur co-doped graphene (Fe-SAc/NSG) is designed and synthesized. The Fe-SAc/NSG catalyst exhibits excellent alkaline ORR activity, exceeding benchmark Pt/C and most Fe-SAc ORR electrocatalysts, as well as superior stability in Zn-air battery. This work aims to pave the way for creating highly active single metal atom catalysts through the localized regulation of their atomic structure.

5.
Front Public Health ; 11: 1277182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026331

RESUMO

In recent decades, heavy metals (HMs) have emerged as a global health concern. Unfortunately, in Pakistan, there is a general lack of awareness regarding the potential health risks associated with HMs pollution among automobile workers. Herein, we investigated the concentration of heavy metals such as lead (Pb), cadmium (Cd), and chromium (Cr) among automobile workers who were occupationally exposed in Mingora City, Khyber Pakhtunkhwa, Pakistan. Three different automobile groups, i.e., battery recyclers, spray painters, and mechanics were studied in detail. A total of 40 blood samples were collected from automobile workers groups while 10 blood samples were collected as control individuals from different locations in the study area. We investigated heavy metals concentration with a standard method using an atomic absorption spectrometer AAS (PerkinElmer Analyst 700, United States). Based on our findings, the battery recycling group displayed the most elevated Pb levels (5.45 ± 2.11 µg/dL), exceeding those of both the spray painters' group (5.12 ± 1.98 µg/dL) and the mechanics' group (3.79 ± 2.21 µg/dL). This can be attributed to their higher exposure to Pb pollution resulting from the deterioration, dismantling, grinding, or crushing of old batteries. In the context of chromium (Cr) exposure, a similar trend was observed among the battery recycling group, as well as the spray painters and mechanics groups. However, in the case of cadmium (Cd), the mechanics' group exhibited the highest level of exposure (4.45 ± 0.65 µg/dL), surpassing the battery recycling group (1.17 ± 0.45 µg/dL) and the spray painters' group (1.35 ± 0.69 µg/dL), which was attributed to their greater exposure to welding fumes and other activities in their workplace. We believe that our findings will encourage regulatory measures to improve the health of automobile workers. However, further work is needed to determine various health-related issues associated with heavy metal exposure among automobile workers.


Assuntos
Metais Pesados , Exposição Ocupacional , Humanos , Cádmio , Chumbo , Exposição Ocupacional/análise , Metais Pesados/análise , Cromo/análise
6.
Adv Sci (Weinh) ; 10(28): e2301852, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552043

RESUMO

Despite the development of advanced technologies for interventional coronary reperfusion after myocardial infarction, a substantial number of patients experience high mortality due to myocardial ischemia-reperfusion (MI/R) injury. An in-depth understanding of the mechanisms underlying MI/R injury can provide crucial strategies for mitigating myocardial damage and improving patient survival. Here, it is discovered that the 4-hydroxy-2-nonenal (4-HNE) accumulates during MI/R, accompanied by high rates of myocardial ferroptosis. The loss-of-function of aldehyde dehydrogenase 2 (ALDH2), which dissipates 4-HNE, aggravates myocardial ferroptosis, whereas the activation of ALDH2 mitigates ferroptosis. Mechanistically, 4-HNE targets glutathione peroxidase 4 (GPX4) for K48-linked polyubiquitin-related degradation, which 4-HNE-GPX4 axis commits to myocyte ferroptosis and forms a positive feedback circuit. 4-HNE blocks the interaction between GPX4 and ovarian tumor (OTU) deubiquitinase 5 (OTUD5) by directly carbonylating their cysteine residues at C93 of GPX4 and C247 of OTUD5, identifying OTUD5 as the novel deubiquitinase for GPX4. Consequently, the elevation of OTUD5 deubiquitinates and stabilizes GPX4 to reverse 4-HNE-induced ferroptosis and alleviate MI/R injury. The data unravel the mechanism of 4-HNE in GPX4-dependent ferroptosis and identify OTUD5 as a novel therapeutic target for the treatment of MI/R injury.

7.
Angew Chem Int Ed Engl ; 62(34): e202307695, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37394618

RESUMO

A family of novel highly π-extended tetracyano-substituted acene diimides, named as tetracyanodiacenaphthoanthracene diimides (TCDADIs), have been synthesized using a facile four-fold Knoevenagel condensation strategy. Unlike conventional cyano substitution reactions, our approach enables access to a large π-conjugated backbone with the in-situ formation of four cyano substitutents at room temperature while avoiding extra cyano-functionalization reactions. TCDADIs decorated with different N-alkyl substituents present good solubility, near-coplanar backbones, good crystallinity, and low-lying lowest unoccupied molecular orbital energies of -4.33 eV, all of which contribute to desirable electron-transport performance when applied in organic field-effect transistors (OFET). The highest electron mobility of an OFET based on a 2-hexyldecyl-substituted TCDADI single crystal reaches 12.6 cm2  V-1 s-1 , which is not only among the highest values for the reported n-type organic semiconductor materials (OSMs) but also exceeds that of most n-type OSMs decorated with imide units.

8.
Environ Res ; 234: 116601, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429395

RESUMO

Transportation emissions significantly affect human health, air quality, and climate in urban areas. This study conducted experiments in an urban tunnel in Taipei, Taiwan, to characterize vehicle emissions under real driving conditions, providing emission factors of PM2.5, eBC, CO, and CO2. By applying multiple linear regression, it derives individual emission factors for heavy-duty vehicles (HDVs), light-duty vehicles (LDVs), and motorcycles (MCs). Additionally, the oxidative potential using dithiothreitol assay (OPDTT) was established to understand PM2.5 toxicity. Results showed HDVs dominated PM2.5 and eBC concentrations, while LDVs and MCs influenced CO and CO2 levels. The CO emission factor for transportation inside the tunnel was found to be higher than those in previous studies, likely owing to the increased fraction of MCs, which generally emit higher CO levels. Among the three vehicle types, HDVs exhibited the highest PM2.5 and eBC emission factors, while CO and CO2 levels were relatively higher for LDVs and MCs. The OPDTTm demonstrated that fresh traffic emissions were less toxic than aged aerosols, but higher OPDTTv indicated the impact on human health cannot be ignored. This study updates emission factors for various vehicle types, aiding in accurate assessment of transportation emissions' effects on air quality and human health, and providing a guideline for formulating mitigation strategies.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Humanos , Idoso , Emissões de Veículos/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Motocicletas , Dióxido de Carbono , Monitoramento Ambiental/métodos , Material Particulado/análise , Estresse Oxidativo , Veículos Automotores
9.
J Trauma Acute Care Surg ; 95(5): 672-678, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478341

RESUMO

BACKGROUND: Uncontrolled hemorrhage is the leading cause of preventable death in combat and civilian trauma. Efficacious hemostatic agents in junctional hemorrhage can quell blood loss and improve survival. We hypothesized that a novel hemostatic foam of starch and chitosan would improve hemostasis, and thereby increase survival in a swine femoral artery hemorrhage model when compared with CombatGauze (CG). METHODS: A novel hemostatic foam of starch and chitosan was created and modified during the study period. Thirty pigs (four excluded) were assigned to treatment using either foam version 1 (FV1, n = 9) or 2 (FV2, n = 8), or (n = 9) in a standard swine femoral artery hemorrhage model. Animals were observed for 150 minutes. Outcomes assessed included hemostasis, survival, posttreatment blood loss, IV fluid volume, and hemodynamic and laboratory trends. RESULTS: Hemostasis prior to 150 minutes was similar with 44.4%, 77.8%, and 50% of swine treated with CG, FV1 and FV2, respectively (Kaplan-Meyer and log-rank test [KM-LR] p > 0.05). Survival to 150 minutes was improved in swine treated with FV1 (100%) compared with CG (55.6%) (KM-LR p = 0.02). Survival was similar between FV1 and FV2 (75%) (KM-LR p > 0.05), and between CG and FV2 (KM-LR p > 0.05). Using mixed model for longitudinal data, mean arterial pressure decreased significantly in CG- and FV2-treated swine, while there was no significant change in mean arterial pressure in FV1-treated swine. Trends in lactic acid, hematocrit, platelets, INR, and thrombelastography were more favorable for FV1 compared with CG. CONCLUSION: In this preclinical study of junctional hemorrhage, survival was improved in swine treated with version 1 of a novel chitosan/starch foam compared with CG. Trends in hemodynamics and laboratory data were also more favorable in the FV1-treated swine. This novel hemostatic foam may be an effective alternative to current hemostatic agents.


Assuntos
Quitosana , Hemostáticos , Suínos , Animais , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Artéria Femoral/lesões , Polieletrólitos , Hemorragia/etiologia , Hemostasia , Amido
10.
Chem Sci ; 14(22): 6087-6094, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37293645

RESUMO

The precise synthesis of cycloarenes remains a challenging topic in both organic chemistry and materials science due to their unique fully fused macrocyclic π-conjugated structure. Herein, a series of alkoxyl- and aryl-cosubstituted cycloarenes (kekulene and edge-extended kekulene derivatives, K1-K3) were conveniently synthesized and an unexpected transformation of the anthryl-containing cycloarene K3 into a carbonylated cycloarene derivative K3-R was disclosed by controlling the temperature and gas atmosphere of the Bi(OTf)3-catalyzed cyclization reaction. All their molecular structures were confirmed by single-crystal X-ray analysis. The crystallographic data, NMR measurements, and theoretical calculations reveal their rigid quasi-planar skeletons, dominant local aromaticities, and decreasing intermolecular π-π stacking distance with extension of the two opposite edges. The much lower oxidation potential for K3 by cyclic voltammetry explains its unique reactivity. Moreover, carbonylated cycloarene derivative K3-R shows a remarkable stability, large diradical character, a small singlet-triplet energy gap (ΔES-T = -1.81 kcal mol-1), and weak intramolecular spin-spin coupling. Most importantly, it represents the first example of carbonylated cycloarene diradicaloids as well as the first example of radical-acceptor cycloarenes and will shed some light on synthesis of extended kekulenes and conjugated macrocyclic diradicaloids and polyradicaloids.

11.
J Hazard Mater ; 458: 131859, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331063

RESUMO

It is generally established that PCDD/Fs is harmful to human health and therefore extensive field research is necessary. This study is the first to use a novel geospatial-artificial intelligence (Geo-AI) based ensemble mixed spatial model (EMSM) that integrates multiple machine learning algorithms and geographic predictor variables selected using SHapley Additive exPlanations (SHAP) values to predict spatial-temporal fluctuations in PCDD/Fs concentrations across the entire island of Taiwan. Daily PCDD/F I-TEQ levels from 2006 to 2016 were used for model construction, while external data was used for validating model dependability. We utilized Geo-AI, incorporating kriging, five machine learning, and ensemble methods (combinations of the aforementioned five models) to develop EMSMs. The EMSMs were used to estimate long-term spatiotemporal variations in PCDD/F I-TEQ levels, considering in-situ measurements, meteorological factors, geospatial predictors, social and seasonal influences over a 10-year period. The findings demonstrated that the EMSM was superior to all other models, with an increase in explanatory power reaching 87 %. The results of spatial-temporal resolution show that the temporal fluctuation of PCDD/F concentrations can be a result of weather circumstances, while geographical variance can be the result of urbanization and industrialization. These results provide accurate estimates that support pollution control measures and epidemiological studies.


Assuntos
Poluentes Atmosféricos , Benzofuranos , Dibenzodioxinas Policloradas , Humanos , Dibenzodioxinas Policloradas/análise , Dibenzofuranos , Inteligência Artificial , Taiwan , Dibenzofuranos Policlorados/análise , Benzofuranos/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
12.
Small ; 19(28): e2301403, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183299

RESUMO

Developing efficient and stable electrocatalysts for hydrogen evolution reaction (HER) over a wide pH range and industrial large-scale hydrogen production is critical and challenging. Here, a tailoring strategy is developed to fabricate an outstanding HER catalyst in both acidic and alkaline electrolytes containing high-density atomically dispersed Ru sites anchored in the CoP nanoparticles supported on carbon spheres (NC@RuSA -CoP). The obtained NC@RuSA -CoP catalyst exhibits excellent HER performance with overpotentials of only 15 and 13 mV at 10 mA cm-2 in 1 m KOH and 0.5 m H2 SO4 , respectively. The experimental results and theoretical calculations indicate that the strong interaction between the Ru site and the CoP can effectively optimize the electronic structure of Ru sites to reduce the hydrogen binding energy and the water dissociation energy barrier. The constructed alkaline anion exchange membrane water electrolyze (AAEMWE) demonstrates remarkable durability and an industrial-level current density of 1560 mA cm-2 at 1.8 V. This strategy provides a new perspective on the design of Ru-based electrocatalysts with suitable intermediate adsorption strengths and paves the way for the development of highly active electrocatalysts for industrial-scale hydrogen production.

13.
Sci Total Environ ; 880: 163275, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028680

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic provided an unprecedented natural experiment, that allowed us to investigate the impacts of different restrictive measures on personal exposure to specific volatile organic compounds (VOCs) and aldehydes and resulting health risks in the city. Ambient concentrations of the criteria air pollutants were also evaluated. Passive sampling for VOCs and aldehydes was conducted for graduate students and ambient air in Taipei, Taiwan, during the Level 3 warning (strict control measures) and Level 2 alert (loosened control measures) of the COVID-19 pandemic in 2021-2022. Information on the daily activities of participants and on-road vehicle counts nearby the stationary sampling site during the sampling campaigns were recorded. Generalized estimating equations (GEE) with adjusted meteorological and seasonal variables were used to estimate the effects of control measures on average personal exposures to the selected air pollutants. Our results showed that ambient CO and NO2 concentrations in relation to on-road transportation emissions were significantly reduced, which led to an increase in ambient O3 concentrations. Exposure to specific VOCs (benzene, methyl tert-butyl ether (MTBE), xylene, ethylbenzene, and 1,3-butadiene) associated with automobile emissions were remarkably decreased by ~40-80 % during the Level 3 warning, resulting in 42 % and 50 % reductions of total incremental lifetime cancer risk (ILCR) and hazard index (HI), respectively, compared with the Level 2 alert. In contrast, the exposure concentration and calculated health risks in the selected population for formaldehyde increased by ~25 % on average during the Level 3 warning. Our study improves knowledge of the influence of a series of anti-COVID-19 measures on personal exposure to specific VOCs and aldehydes and its mitigations.


Assuntos
Poluentes Atmosféricos , COVID-19 , Compostos Orgânicos Voláteis , Humanos , Aldeídos/análise , Compostos Orgânicos Voláteis/análise , Pandemias , COVID-19/epidemiologia , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos
14.
Sci Total Environ ; 875: 162661, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898549

RESUMO

The paper discusses the implementation of Hong Kong's tailor-made sewage surveillance programme led by the Government, which has demonstrated how an efficient and well-organized sewage surveillance system can complement conventional epidemiological surveillance to facilitate the planning of intervention strategies and actions for combating COVID-19 pandemic in real-time. This included the setting up of a comprehensive sewerage network-based SARS-CoV-2 virus surveillance programme with 154 stationary sites covering 6 million people (or 80 % of the total population), and employing an intensive monitoring programme to take samples from each stationary site every 2 days. From 1 January to 22 May 2022, the daily confirmed case count started with 17 cases per day on 1 January to a maximum of 76,991 cases on 3 March and dropped to 237 cases on 22 May. During this period, a total of 270 "Restriction-Testing Declaration" (RTD) operations at high-risk residential areas were conducted based on the sewage virus testing results, where over 26,500 confirmed cases were detected with a majority being asymptomatic. In addition, Compulsory Testing Notices (CTN) were issued to residents, and the distribution of Rapid Antigen Test kits was adopted as alternatives to RTD operations in areas of moderate risk. These measures formulated a tiered and cost-effective approach to combat the disease in the local setting. Some ongoing and future enhancement efforts to improve efficacy are discussed from the perspective of wastewater-based epidemiology. Forecast models on case counts based on sewage virus testing results were also developed with R2 of 0.9669-0.9775, which estimated that up to 22 May 2022, around 2,000,000 people (~67 % higher than the total number of 1,200,000 reported to the health authority, due to various constraints or limitations) had potentially contracted the disease, which is believed to be reflecting the real situation occurring in a highly urbanized metropolis like Hong Kong.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Vigilância Epidemiológica Baseada em Águas Residuárias , Esgotos , Pandemias , Hong Kong/epidemiologia
15.
Membranes (Basel) ; 13(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36837650

RESUMO

Ultrafiltration (UF) is a common technique used in wastewater treatments. However, the issue of membrane fouling in UF can greatly hinder the effectiveness of the treatments. This study demonstrated a low-fouling composite cellulose membrane system based on microfibrillated cellulose (MFC) and silica nanoparticle additives. The incorporation of 'non-spherical' silica nanoparticles was found to exhibit better structural integration in the membrane (i.e., minimal aggregation of silica nanoparticles in the membrane scaffold) as compared to spherical silica. The resulting composite membranes were tested for UF using local wastewater, where the best-performing membrane exhibited higher permeation flux than commercial polyvinylidene difluoride (PVDF) and polyether sulfone (PES) membranes while maintaining a high separation efficiency (~99.6%) and good flux recovery ratio (>90%). The analysis of the fouling behavior using different models suggested that the processes of cake layer formation and pore-constriction were probably two dominant fouling mechanisms, likely due to the presence of humic substances in wastewater. The demonstrated cellulose composite membrane system showed low-fouling and high restoration capability by a simple hydraulic cleaning method due to the super hydrophilic nature of the cellulose scaffold containing silica nanoparticles.

16.
ACS Appl Mater Interfaces ; 15(9): 12248-12260, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848253

RESUMO

Driven by the ever-growing awareness of sustainability and circular economy, renewable, biodegradable, and recyclable fiber-based packaging materials are emerging as alternatives to fossil-derived, nonbiodegradable single-use plastics for the packaging industry. However, without functional barrier coatings, the water/moisture vulnerability and high permeability of fiber-based packaging significantly restrain its broader application as primary packaging for food, beverages, and drugs. Herein, we develop waterborne complex dispersion barrier coatings consisting of natural, biodegradable polysaccharides (i.e., chitosan and carboxymethyl cellulose) through a scalable, one-pot mechanochemical pathway. By tailoring the electrostatic complexation, the key element to form a highly crosslinked and interpenetrated polymer network structure, we formulate complex dispersion barrier coatings with excellent film-forming property and adaptable solid-viscosity profiles suitable for paperboard and molded pulp substrates. Our complex dispersions enable the formation of a uniform, defect-free, and integrated coating layer, leading to a remarkable oil and grease barrier and efficient water/moisture sensitivity reduction while still exhibiting excellent recyclability profile of the resulting fiber-based substrates. This natural, biorenewable, and repulpable barrier coating is a promising candidate to serve as a sustainable option for fiber-based packaging intended for the food and food service packaging industry.

17.
Adv Mater ; 35(20): e2300094, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807375

RESUMO

Designing (hetero)cycloarenes through the modifications of the π-topology and molecular packing of organic semiconductors has recently garnered considerable attention. However, their applications as an organic active layer in field-effect transistors are very limited, and the obtained hole carrier mobilities are less than 1 cm2 V-1 s-1 . In this work, a novel alkyl-substituted coplanar N-heterocycloarene (FM-C4) containing four carbazole units is successfully synthesized in crystalline form. As compared to the corresponding single-bond-linked carbazole-based macrocycle M-C4, it is found that the periphery fusion strategy greatly changes the electronic structures, energy levels, photophysical properties, host-guest interactions with fullerenes, and molecular crystal stacking motifs. In particular, the fully fused N-heterocycloarene FM-C4 exhibits a herringbone packing structure with an unusual long-range π-π overlap distance as low as 3.19 Å, whereas the single crystal of M-C4 demonstrates no π-π interactions. As a consequence, FM-C4 in single-crystal transistors displays the highest hole mobility of 2.06 cm2 V-1 s-1 , significantly outperforming M-C4 and all the reported (hetero)cycloarenes and suggesting the high potential of (hetero)cycloarenes for organic electronic applications.

18.
Acta Biomater ; 158: 686-697, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623782

RESUMO

Selectively generating active free radical (AFR) in tumor microenvironment (TME) can promote irreversible oxidation of biomolecules and damage tumor cells, resulting in effective tumor inhibition. However, therapeutic efficacy of AFR-based tumor suppression approaches is often limited by insufficient amount of H2O2 or O2 within TME. To overcome this obstacle, we design a pH/photothermal dual responsive nanosystem (PFeSA@AS) for combined photothermal and nanocatalytic therapy in the near-infrared biowindow. Here the Fe single-atom dispersed N, S-doped carbon nanosheets (FeSA) nanozyme is dispersed by phospholipid-polyethylene glycol-amine (DSPE-PEG-NH2), and further loads artesunate (AS) via an amide reaction. Upon 808-nm laser irradiation in TME, the AS is released and further be catalyzed by the FeSA nanozyme to produce cytotoxic C-centered AFRs, and further be accelerated due to the photothermal conversion performance of FeSA (23.35%). The nanocatalytic process of FeSA nanozyme is realized by density functional theory (DFT). The tumor inhibition rates of a CT26 xenograft model is 92% through a photothermal-enhanced nanocatalytic synergistic therapy, and negligible systematic toxicity is observed. This work offers a potential paradigm of multifunctional single atomic catalysts (SACs) for enhancing tumor nanocatalytic therapy. STATEMENT OF SIGNIFICANCE: We designed a pH/photothermal dual responsive nanosystem (PFeSA@AS) for nanocatalytic therapy: (1) the nanosystem responsively releases AS under 808-nm laser irradiation in TME; (2) FeSA in the nanosystem can act as heme mimetic to convert AS into high cytotoxic C-centered free radicals for nanocatalytic therapy; (3) the photothermal conversion performance of FeSA further enhances the catalytic process to yield abundant AFR. Both in vitro and in vivo results demonstrate that this nanosystem can efficiently inhibit tumor growth through a photothermal-enhanced nanocatalytic synergistic therapy.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Fototerapia , Linhagem Celular Tumoral , Artesunato/farmacologia , Peróxido de Hidrogênio/farmacologia , Catálise , Microambiente Tumoral
19.
Environ Pollut ; 316(Pt 2): 120652, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375582

RESUMO

The influence of long-range transport (LRT) of air pollutants on neighboring regions and countries has been documented. The magnitude of LRT aerosols and related constituents can misdirect control strategies for local air quality management. In this study, we aimed to quantify PM2.5 (diameter less than 2.5 µm, PM2.5) and associated metals derived from local sources and LRT in different geographic locations in Taiwan using advanced receptor models. We collected daily PM2.5 samples (n = âˆ¼1000) and analyzed 28 metals every three days from 2016 to 2018 in the northern, central-south, eastern, and southern areas of Taiwan. We first used a machine learning technique with a cluster algorithm coupled with a backward trajectory to classify local, regional, and LRT-related aerosols. We then quantified the source contributions with a positive matrix factorization (PMF) model for Taiwan weighted by region-specific populations. The northern and eastern regions were found to be more vulnerable to LRT-related PM2.5 and metals than the central-south and southern regions in Taiwan. The LRT increased Pb and As concentrations by 90-200% and ∼40% in the northern and central-south regions. Ambient PM2.5-metals mainly originated from local traffic-related emissions in the northern, central-south, and southern regions, whereas oil combustion was the primary source of PM2.5-metals in the eastern region. By subtracting the influence from the LRT, the contributions of domestic emission sources to ambient PM2.5 metals in Taiwan were 35% from traffic-related emission, 17% from non-ferrous metallurgy, 13% from iron ore and steel factories, 12% from coal combustion, 12% from oil combustion, 10% from incinerator emissions, and <1% from cement manufacturing emissions. This study proposed an advanced method for refining local source contributions to ambient PM2.5 metals in Taiwan, which provides useful information on regional control strategies.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Monitoramento Ambiental/métodos , Taiwan , Estações do Ano , Poluentes Atmosféricos/análise , Aerossóis/análise , Metais/análise , Aprendizado de Máquina , Algoritmos , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...