Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(20): 11959-11975, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35423771

RESUMO

Dolichandrone spathacea iridoids are promising anti-diabetic inhibitors towards α-glucosidase protein (PDB-3W37) and oligo-1,6-glucosidase protein (PDB-3AJ7). Five catalpol iridoids (1, 2, 10, 13, 14) were isolated from mangrove plant D. spathacea, and their derivatives (3, 4, 5, 6, 7, 8, 9, 11, 12, 15) were obtained from reduction, acetylation, O-alkylation, acetonisation, or hydrolysation starting from naturally isolated compounds. They were identified by spectral methods such as IR, MS, and 1D and 2D NMR. Their glucosidase-related (3W37 and 3AJ7) inhibitability and physiological compatibility were predicted by molecular docking simulation and prescreened based on Lipinski's rule of five. Experimental α-glucosidase inhibition of 1-15 was evaluated using enzyme assays. Compounds 3, 4, 5, 6, and 9 are new iridoid derivatives, introduced to the literature for the first time, while all fifteen compounds 1-15 are studied for molecular docking for the first time. Regarding protein 3W37, the five strongest predicted inhibitors assemble in the order 2 > 10 > 1 > 9 > 14. In respect to 3AJ7, the corresponding order is 14 > 2 > 10 > 5 > 1 = 9. Lipinski's criteria suggest 10 as the candidate with the most potential for oral administration. The in vitro bioassay revealed that compound 10 is the most effective inhibitor with a respective IC50 value of 0.05 µM, in the order 10 > 2 > 14 > 13 > 1. The computational and experimental results show good consistency. The study opens an alternative approach for diabetes treatment based on inhibitability of natural and semi-synthesised catalpol iridoid derivatives towards carbohydrate-hydrolases.

2.
RSC Adv ; 11(57): 35765-35782, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35492788

RESUMO

Dipterocarpus alatus-derived products are expected to exhibit anti-diabetes properties. Natural dipterocarpol (1) was isolated from Dipterocarpus alatus collected in Quang Nam province, Vietnam; afterwards, 20 derivatives including 13 oxime esters (2 and 3a-3m) and 7 lactones (4, 5, 6a-6e) were semi-synthesised. Their inhibitory effects towards diabetes-related proteins were investigated experimentally (α-glucosidase) and computationally (3W37, 3AJ7, and PTP1B). Except for compound 2, the other 19 compounds (3a-3m, 4, 5, and 6a-6d) are reported for the first time, which were modified at positions C-3, C-24 and C-25 of the dipterocarpol via imidation, esterification, oxidative cleavage and lactonisation reactions. A framework based on docking-QSARIS combination was proposed to predict the inhibitory behaviour of the ligand-protein complexes. Enzyme assays revealed the most effective α-glucosidase inhibitors, which follow the order 5 (IC50 of 2.73 ± 0.05 µM) > 6c (IC50 of 4.62 ± 0.12 µM) > 6e (IC50 of 7.31 ± 0.11 µM), and the computation-based analysis confirmed this, i.e., 5 (mass: 416.2 amu; polarisability: 52.4 Å3; DS: -14.9 kcal mol-1) > 6c (mass: 490.1 amu; polarisability: 48.8 Å3; DS: -13.7 kcal mol-1) > 6e (mass: 549.2 amu; polarisability: 51.6 Å3; DS: -15.2 kcal mol-1). Further theoretical justifications predicted 5 and 6c as versatile anti-diabetic inhibitors. The experimental results encourage next stages for the development of anti-diabetic drugs and the computational strategy invites more relevant work for validation.

3.
Sci Total Environ ; 657: 146-153, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30537577

RESUMO

There are growing concerns about nitrate contamination in Kumamoto City, where >700,000 people completely depend on groundwater as a source of drinking water. We found that some groundwater samples showed considerably different nitrate concentrations although their sampling locations were close to one another, and we speculated that this phenomenon was due to the differences in subsurface geological properties. In order to verify this hypothesis, we carried out temporally intensive long-term monitoring of the groundwater levels and water qualities at three of the closely related sampling wells, and the results revealed that the changes in water level and water quality were different at each well. The water level at well T1, where nitrate concentrations ranged from 12 to 26 mg N/L, showed a significantly sensitive and unique response to heavy rain, which indicated that the subsurface at this site might be highly permeable; this would have allowed for the influent water to easily reach the groundwater aquifer over a short period. However, wells T2 and T3, which were located within 0.6 and 1.9 km from well T1, respectively, had nitrate concentrations that were lower than that in well T1 (4.5-8.0 mg N/L) and showed only gradual responses to heavy rain. These observations suggest that the highly permeable subsurface properties in the vicinity of well T1 contributed to the more serious nitrate contamination in well T1 than those at wells T2 and T3. This study demonstrates the importance of temporally intensive, long-term monitoring for capturing changes in groundwater level and water quality with precipitation fluctuations, and we showed how this approach can lead to a better understanding of the nitrate contamination situation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA