RESUMO
The mechanical characterization of plain foamed concrete (PFC) and fiber-reinforced foamed concrete (FRFC) with a density of 700 kg/m3 was performed with compression and tension tests. FRFC was reinforced with the natural fiber henequen (untreated or alkaline-treated) at volume fractions of 0.5%, 1% and 1.5%. Polypropylene fiber reinforcement was also used as a reference. For all FRFCs, the inclusion of the fibers enhanced the compressive and tensile strengths and plastic behavior, which was attributed to the increase of specimen integrity. Under compressive loading, after the peak strength, there was no considerable loss in strength and a plateau-like regime was observed. Under tensile loading, the fibers significantly increased the tensile strength of the FRFCs and prevented a sudden failure of the specimens, which was in contrast to the brittle behavior of the PFC. The tensile behavior enhancement was higher when treated henequen fibers were used, which was attributed to the increase in the fiber-matrix bond produced by the alkaline treatment. The microscopic characterization showed that the inclusion of fibers did not modify the air-void size and its distribution. Higher energy absorption was observed for FRFCs when compared to the PFC, which was attributed to the enhanced toughness and ductility by the fibers. The results presented herein warrant further research of FRFC with natural henequen fibers for engineering applications.
RESUMO
Naja naja snake venom presents abundant thermostable peptides. Many of them possess useful pharmacological activity that may be employed for drug development. For the proteomic characterization of such toxins, in the present study, Naja naja venom solution was heated up to 100°C for 10, 30, 60, 120, 180 and 300 minutes and protein fractions of non-heated and heated venom were analyzed by two-dimensional nano-liquid chromatography coupled online with tandem mass spectrometry. After heating for 300 minutes, a total of 32 peptides were still detected in the supernatant. The identified peptides belong to the following groups: cardiotoxins, neurotoxins and cytotoxins. It was found that thermostable peptides are able to preserve their analgesic activity after a long heating time in formalin test. Mice injected with 15 µg/g of 60-minute heated venom or with 25 µg/g of 300-minute heated venom revealed even a better analgesic activity than those treated with lidocaine.(AU)
Assuntos
Animais , Peptídeos , Venenos de Serpentes , Citotoxinas , Proteômica/classificação , Naja najaRESUMO
Naja naja snake venom presents abundant thermostable peptides. Many of them possess useful pharmacological activity that may be employed for drug development. For the proteomic characterization of such toxins, in the present study, Naja naja venom solution was heated up to 100°C for 10, 30, 60, 120, 180 and 300 minutes and protein fractions of non-heated and heated venom were analyzed by two-dimensional nano-liquid chromatography coupled online with tandem mass spectrometry. After heating for 300 minutes, a total of 32 peptides were still detected in the supernatant. The identified peptides belong to the following groups: cardiotoxins, neurotoxins and cytotoxins. It was found that thermostable peptides are able to preserve their analgesic activity after a long heating time in formalin test. Mice injected with 15 ìg/g of 60-minute heated venom or with 25 ìg/g of 300-minute heated venom revealed even a better analgesic activity than those treated with lidocaine.(AU)