Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 100(1): 254-262, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29100788

RESUMO

PURPOSE: Patient setup for treating large target volumes can be challenging. In the present study, we measured the local uncertainties in the treatment of mediastinal lymphoma and investigated the need for region-specific planning target volume (PTV) margins. METHODS AND MATERIALS: The data from 30 patients who had undergone radiation therapy for mediastinal lymphoma were retrospectively analyzed. A computed tomography (CT)-on-rails (CTOR) system in the treatment room was used for daily image guidance. The total PTV was split into 6 regions: neck, supraclavicular fossa, axilla, mediastinum, upper heart, and lower heart. The total PTV and the 6 local regions were separately aligned to the planning CT scan using automatic rigid registration. The residual local errors using 3 setup strategies were investigated: no image guidance, CTOR setup to total PTV, and simulated cone beam CT setup to the mediastinum. Errors were recorded in the anteroposterior, superoinferior, and right-left directions separately. Using the residual error calculations, the margins required to cover 95% of the clinical target volume for 90% of the patients was estimated. RESULTS: For each patient, 12 to 21 days of daily CTOR data were available for analysis. The residual errors for the total PTV and mediastinum setups were both smaller than those with no image guidance. The lower heart region had more uncertainty with all 3 setup strategies. Margin analysis revealed that the magnitude of the margin is dependent on the imaging strategy, direction, and local region inside the PTV. Margins >7 mm are necessary to account for uncertainty in the neck, lower heart, and axilla regions even under daily CT guidance. CONCLUSIONS: Setup uncertainties in the mediastinum are not uniform and are dependent on target location and imaging strategy. However, with the appropriate margin, we can target regions that might not be visualized with the available on-board imager system.


Assuntos
Suspensão da Respiração , Linfoma/radioterapia , Neoplasias do Mediastino/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia , Radioterapia de Intensidade Modulada/métodos , Incerteza , Adolescente , Adulto , Axila/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Feminino , Coração/diagnóstico por imagem , Humanos , Inalação , Linfoma/diagnóstico por imagem , Linfoma/patologia , Masculino , Neoplasias do Mediastino/diagnóstico por imagem , Neoplasias do Mediastino/patologia , Mediastino/diagnóstico por imagem , Pessoa de Meia-Idade , Radioterapia Guiada por Imagem/métodos , Fatores de Tempo , Carga Tumoral , Adulto Jovem
2.
Med Phys ; 34(9): 3520-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17926955

RESUMO

We have developed a new four-dimensional cone beam CT (4D-CBCT) on a Varian image-guided radiation therapy system, which has radiation therapy treatment and cone beam CT imaging capabilities. We adapted the speed of gantry rotation time of the CBCT to the average breath cycle of the patient to maintain the same level of image quality and adjusted the data sampling frequency to keep a similar level of radiation exposure to the patient. Our design utilized the real-time positioning and monitoring system to record the respiratory signal of the patient during the acquisition of the CBCT data. We used the full-fan bowtie filter during data acquisition, acquired the projection data over 200 deg of gantry rotation, and reconstructed the images with a half-scan cone beam reconstruction. The scan time for a 200-deg gantry rotation per patient ranged from 3.3 to 6.6 min for the average breath cycle of 3-6 s. The radiation dose of the 4D-CBCT was about 1-2 times the radiation dose of the 4D-CT on a multislice CT scanner. We evaluated the 4D-CBCT in scanning, data processing and image quality with phantom studies. We demonstrated the clinical applicability of the 4D-CBCT and compared the 4D-CBCT and the 4D-CT scans in four patient studies. The contrast-to-noise ratio of the 4D-CT was 2.8-3.5 times of the contrast-to-noise ratio of the 4D-CBCT in the four patient studies.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Respiração , Tomografia Computadorizada por Raios X/métodos , Humanos
3.
Med Phys ; 33(10): 3931-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17089855

RESUMO

We proposed a low-dose average computer tomography (ACT) for attenuation correction (AC) of the PET cardiac data in PET/CT. The ACT was obtained from a cine CT scan of over one breath cycle per couch position while the patient was free breathing. We applied this technique on four patients who underwent tumor imaging with 18F-FDG in PET/CT, whose PET data showed high uptake of 18F-FDG in the heart and whose CT and PET data had misregistration. All four patients did not have known myocardiac infarction or ischemia. The patients were injected with 555-740 MBq of 18F-FDG and scanned 1 h after injection. The helical CT (HCT) data were acquired in 16 s for the coverage of 100 cm. The PET acquisition was 3 min per bed of 15 cm. The duration of cine CT acquisition per 2 cm was 5.9 s. We used a fast gantry rotation cycle time of 0.5 s to minimize motion induced reconstruction artifacts in the cine CT images, which were averaged to become the ACT images for AC of the PET data. The radiation dose was about 5 mGy for 5.9 s cine duration. The selection of 5.9 s was based on our analysis of the respiratory signals of 600 patients; 87% of the patients had average breath cycles of less than 6 s and 90% had standard deviations of less than 1 s in the period of breath cycle. In all four patient studies, registrations between the CT and the PET data were improved. An increase of average uptake in the anterior and the lateral walls up to 48% and a decrease of average uptake in the septal and the inferior walls up to 16% with ACT were observed. We also compared ACT and conventional slow scan CT (SSCT) of 4 s duration in one patient study and found ACT was better than SSCT in depicting average respiratory motion and the SSCT images showed motion-induced reconstruction artifacts. In conclusion, low-dose ACT improved registration of the CT and the PET data in the heart region in our study of four patients. ACT was superior than SSCT for depicting average respiration motion in a patient study.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Miocárdio/patologia , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodos , Artefatos , Coração , Humanos , Imageamento Tridimensional , Respiração , Técnica de Subtração
4.
Med Phys ; 33(7): 2369-83, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16898439

RESUMO

This project investigated the potential of summing fixed-beam dose distributions calculated using the pencil-beam redefinition algorithm (PBRA) at small angular steps (1 degree) to model an electron arc therapy beam. The PRBA, previously modified to model skin collimation, was modified further by incorporating two correction factors. One correction factor that is energy, SSD (source-to-surface distance), and field-width dependent constrained the calculated dose output to be the same as the measured dose output for fixed-beam geometries within the range of field widths and SSDs encountered in arc therapy. Another correction factor (single field-width correction factor for each energy) compensated for large-angle scattering not being modeled, allowing a more accurate calculation of dose output at mid arc. The PBRA was commissioned to accurately calculate dose in a water phantom for fixed-beam geometries typical of electron arc therapy. Calculated central-axis depth doses agreed with measured doses to within 2% in the low-dose gradient regions and within 1-mm in the high-dose gradient regions. Off-axis doses agreed to within 2 mm in the high-dose gradient regions and within 3% in the low-dose gradient regions. Arced-beam calculations of dose output and depth dose at mid arc were evaluated by comparing to data measured using two cylindrical water phantoms with radii of 12 and 15 cm at 10 and 15 MeV. Dose output was measured for all combinations of phantom radii of curvature, collimator widths (4, 5, and 6 cm), and arc angles (0 degrees, 20 degrees, 40 degrees, 60 degrees, 80 degrees, and 90 degrees) for both beam energies. Results showed the calculated mid-arc dose output to agree within 2% of measurement for all combinations. For a 90 degree arc angle and 5 x 20 cm2 field size, the calculated mid-arc depth dose in the low-dose gradient region agreed to within 2% of measurement for all depths at 10 MeV and for depths greater than depth of dose maximum R100 at 15 MeV. For depths in the buildup region at 15 MeV the calculations overestimated the measured dose by as much as 3.4%. Mid-arc depth dose in the high-dose gradient region agreed to within 2.2 mm of measured dose. Calculated two-dimensional relative dose distributions in the plane of rotation were compared to dose measurements using film in a cylindrical polystyrene phantom for a 90 degree arc angle and field widths of 4, 5, and 6 cm at 10 and 15 MeV. Results showed that off-axis dose at the ends of arc (without skin collimation) agreed to within 2% in the low-dose gradient region and to within 1.2 mm in the high-dose gradient region. This work showed that the accuracy of the PBRA arced-beam dose model met the criteria specified by Van Dyk et al. [Int. J. Radiat. Oncol. Biol. Phys. 26, 261-273 (1993)] with the exception of the buildup region of the 15 MeV beam. Based on the present results, results of a previous study showing acceptable accuracy in the presence of skin collimation, and results of a previous study showing acceptable accuracy in the presence of internal heterogeneities, it is concluded that the PBRA arced-beam dose model should be adequate for planning electron arc therapy.


Assuntos
Elétrons , Radioterapia de Alta Energia/métodos , Algoritmos , Humanos , Modelos Estatísticos , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Pele/efeitos da radiação
5.
Med Phys ; 32(11): 3409-18, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16370427

RESUMO

Skin collimation is an important tool for electron beam therapy that is used to minimize the penumbra when treating near critical structures, at extended treatment distances, with bolus, or using arc therapy. It is usually made of lead or lead alloy material that conforms to and is placed on patient surface. Presently, commercially available treatment-planning systems lack the ability to model skin collimation and to accurately calculate dose in its presence. The purpose of the present work was to evaluate the use of the pencil beam redefinition algorithm (PBRA) in calculating dose in the presence of skin collimation. Skin collimation was incorporated into the PBRA by terminating the transport of electrons once they enter the skin collimator. Both fixed- and arced-beam dose calculations for arced-beam geometries were evaluated by comparing them with measured dose distributions for 10- and 15-MeV beams. Fixed-beam dose distributions were measured in water at 88-cm source-to-surface distance with an air gap of 32 cm. The 6 x 20-cm2 field (dimensions projected to isocenter) had a 10-mm thick lead collimator placed on the surface of the water with its edge 5 cm inside the field's edge located at +10 cm. Arced-beam dose distributions were measured in a 13.5-cm radius polystyrene circular phantom. The beam was arced 90 degrees (-45 degrees to +45 degrees), and 10-mm thick lead collimation was placed at +/- 30 degrees. For the fixed beam at 10 MeV, the PBRA- calculated dose agreed with measured dose to within 2.0-mm distance to agreement (DTA) in the regions of high-dose gradient and 2.0% in regions of low dose gradient. At 15 MeV, the PBRA agreed to within a 2.0-mm DTA in the regions of high-dose gradient; however, the PBRA underestimated the dose by as much as 5.3% over small regions at depths less than 2 cm because it did not model electrons scattered from the edge of the skin collimation. For arced beams at 10 MeV, the agreement was 1-mm DTA in the high-dose gradient regions, and 2% in the low-dose gradient regions. For arced beams at 15 MeV, the agreement was 1 mm in the high-dose gradient regions, and in the low-dose gradient region at depth less than 2 cm, as much as 5% dose difference was observed. This study demonstrated the ease with which skin collimation can be incorporated into the PBRA. The good agreement of PBRA calculated with measured dose shows that the PBRA is likely sufficiently accurate for clinical use in the presence of skin collimation for electron arc therapy. To further improve the accuracy of the PBRA in regions having significant electrons scattered from the edge of the skin collimation would require transporting the electrons through the lead skin collimation near its edges.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Pele/patologia , Algoritmos , Calibragem , Elétrons , Humanos , Modelos Estatísticos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Poliestirenos , Radiometria , Dosagem Radioterapêutica , Radioterapia de Alta Energia , Espalhamento de Radiação , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...