Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 41(6): 1355-1371, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32583043

RESUMO

Carbonic anhydrase 8 (CA8), an isozyme of α-carbonic anhydrases, lacks the ability to catalyze the reversible hydration of CO2 to bicarbonate and proton. Previous studies have shown that single point mutations of CA8, CA8-S100P, and CA8-G162R, are associated with novel syndromes including congenital ataxia and mild cognitive impairment. Our previous results demonstrated that overexpression of wild type (WT) CA8 promoted cell proliferation, neurite outgrowth, anti-apoptosis, invasion and migration abilities in neuronal cells. In this study, we examined the expressions and functions of CA8-S100P and CA8-G162R in neuroblastoma cells lines, compared with those of WT CA8. Our results show that the protein expressions of mutant CA8-S100P and CA8-G162R were significantly decreased in Neuro-2a and SK-N-SH cells. Interestingly, CA8-S100P demonstrated a significant increase in cell proliferation in both Neuro-2a and SK-N-SH cells. However, both CA8 mutations showed significantly decreased effects on cell protection and migration in SK-N-SH cells. Surprisingly, a significant increase of invasive ability was observed in SK-N-SH cells with overexpression of CA8-S100P as compared with those with overexpression of WT CA8 under retinoic acid (RA) treatment. In addition, we found that Neuro-2a cells with overexpression of CA8-S100P and CA8-G162R showed significantly increased neurite outgrowth. Taken together, our data suggest that the expressions of CA8-S100P and CA8-G162R in neuronal cells alter cell morphology, proliferation, mobility and viability; indicating that the homozygous point mutations of CA8 lead to not only the loss of WT CA8 function, but also the gain of novel functions leading to neuromuscular dysfunction.


Assuntos
Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Regulação Enzimológica da Expressão Gênica , Mutação/genética , Neurônios/enzimologia , Linhagem Celular Tumoral , Células HEK293 , Humanos
2.
Biochim Biophys Acta ; 1840(9): 2829-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24794067

RESUMO

BACKGROUND: Carbonic anhydrase 8 (CA8) is an isozyme of α-carbonic anhydrases (CAs). Previous studies showed that CA8 can be detected in human adult brain, with more intense expression in the cerebellum. Single mutations in CA8 were reported to cause novel syndromes like ataxia, mild mental retardation or the predisposition to quadrupedal gait. METHODS: In the present study, we examine the functions of CA8 in neuronal cell lines, mouse cerebellar granule neurons and zebrafish. RESULTS AND CONCLUSIONS: We demonstrated that overexpression of CA8 in neuronal cells significantly decreased cell death under staurosporine treatment. Moreover, CA8 overexpression significantly increased cell migration and invasion ability in neuronal cells and in mouse cerebellar granule neurons, implicating that CA8 may be involved in neuron motility and oncogenesis. By using zebrafish as an animal model, motor reflection of 3dpf zebrafish embryos was significantly affected after the down-regulation of CA8 through ca8 morpholino. CONCLUSIONS: We concluded that CA8 overexpression desensitizes neuronal cells to STS induced apoptotic stress and increases cell migration and invasion ability in neuronal cells. In addition, down-regulated CA8 decreases neuron mobility in neuronal cells and leads to abnormal calcium release in cerebellar granule neurons. Knockdown of the ca8 gene results in an abnormal movement pattern in zebrafish. GENERAL SIGNIFICANCE: Our findings provide evidence to support that the impaired protective function of CA8 contributes to human neuropathology, and to suggest that zebrafish can be used as an animal model to study the biological functions of human CA8 in vivo.


Assuntos
Biomarcadores Tumorais/biossíntese , Cerebelo/enzimologia , Proteínas do Tecido Nervoso/biossíntese , Doenças do Sistema Nervoso/enzimologia , Neurônios/enzimologia , Proteínas de Peixe-Zebra/biossíntese , Animais , Biomarcadores Tumorais/genética , Linhagem Celular , Cerebelo/patologia , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos ICR , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Neurônios/patologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
Biochem J ; 459(1): 149-60, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24476000

RESUMO

MERRF (myoclonus epilepsy associated with ragged-red fibres) is a maternally inherited mitochondrial encephalomyopathy with various syndromes involving both muscular and nervous systems. The most common mutation in MERRF syndrome, the A8344G mutation in mtDNA, has been associated with severe defects in the respiratory function of mitochondria. In the present study, we show that there is a significant decrease in CA8 (carbonic anhydrase-related protein VIII) in cybrids harbouring the MERRF A8344G mutation. CA8 deficiency and mutations were found to be associated with a distinctive lifelong gait disorder in wdl (Waddles) mice and novel syndromes characterized by cerebellar ataxia and mental retardation in humans. The results of the present study showed that overexpression of CA8 in MERRF cybrids significantly decreased cell death induced by STS (staurosporine) treatment, suggesting a protective function of CA8 in cells harbouring the A8344G mutation of mtDNA. Interestingly, an increase in the formation of LC3-II (microtubule-associated protein 1 light chain 3-II) was found in the cybrids with down-regulated CA8 expression, suggesting that reduced expression of CA8 leads to autophagy activation. Furthermore, cybrids exhibiting down-regulated CA8 showed increased cytosolic Ca2+ signals and reduced levels of phospho-Akt compared with those in the cybrids with overexpressed CA8, indicating that phospho-Akt is involved in the protection of cells by CA8. Our findings suggest that CA8 is involved in the autophagic pathway and may have a protective role in cultured cells from patients with MERRF. Targeting CA8 and the downstream autophagic pathway might help develop therapeutic agents for treatment of MERRF syndrome in the future.


Assuntos
Biomarcadores Tumorais/genética , DNA Mitocondrial/genética , Síndrome MERRF/genética , Mutação/fisiologia , Biomarcadores Tumorais/biossíntese , Morte Celular/genética , Linhagem Celular , DNA Mitocondrial/biossíntese , Humanos , Síndrome MERRF/metabolismo
4.
FEBS J ; 279(16): 2987-3001, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22742457

RESUMO

Mitochondrial DNA (mtDNA) mutations are associated with a large number of neuromuscular diseases. Myoclonus epilepsy with ragged-red fibers (MERRF) syndrome is a mitochondrial disease inherited through the maternal lineage. The most common mutation in MERRF syndrome, the A8344G mutation of mtDNA, is associated with severe defects in mitochondrial protein synthesis, which impair the assembly and function of the respiratory chain. We have previously shown that there is a decreased level of heat shock protein 27 (HSP27) in lymphoblastoid cells derived from a MERRF patient and in cytoplasmic hybrids (cybrids) harboring the A8344G mutation of mtDNA. In the present study, we found a dramatic decrease in the level of phosphorylated HSP27 (p-HSP27) in the mutant cybrids. Even though the steady-state level of p-HSP27 was reduced in the mutant cybrids, normal phosphorylation and dephosphorylation were observed upon exposure to stress, indicating normal kinase and phosphatase activities. To explore the roles that p-HSP27 may play, transfection experiments with HSP27 mutants, in which three specific serines were replaced with alanine or aspartic acid, showed that the phosphomimicking HSP27 desensitized mutant cybrids to apoptotic stress induced by staurosporine (STS). After heat shock stress, p-HSP27 was found to enter the nucleus immediately, and with a prolonged interval of recovery, p-HSP27 returned to the cytoplasm in wild-type cybrids but not in mutant cybrids. The translocation of p-HSP27 was correlated with cell viability, as shown by the increased number of apoptotic cells after p-HSP27 returned to the cytoplasm. In summary, our results demonstrate that p-HSP27 provides significant protection when cells are exposed to different stresses in the cell model of MERRF syndrome. Therapeutic agents targeting anomalous HSP27 phosphorylation might represent a potential treatment for mitochondrial diseases.


Assuntos
Proteínas de Choque Térmico HSP27/fisiologia , Síndrome MERRF/genética , DNA Mitocondrial/genética , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Humanos , Síndrome MERRF/metabolismo , Chaperonas Moleculares , Mutação , Fosforilação , Estaurosporina/farmacologia , Estresse Fisiológico
5.
Mitochondrion ; 11(5): 739-49, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21679777

RESUMO

Mitochondrial DNA (mtDNA) mutations are responsible for human neuromuscular diseases caused by mitochondrial dysfunction. Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a maternally inherited mitochondrial encephalomyopathy with various syndromes involving both muscular and nervous systems. The most common mutation in MERRF syndrome, A8344G mutation in mtDNA, has been associated with severe defects in protein synthesis. This defect impairs assembly of complexes in electron transport chain and results in decreased respiratory function of mitochondria. In this study, we showed a significant decrease of the heat shock protein 27 (Hsp27) in lymphoblastoid cells derived from a MERRF patient and in cybrid cells harboring MERRF A8344G mutation. However, normal cytoplasmic distributions of Hsp27 and normal heat shock responses were observed in both wild type and mutant cybrids. Furthermore, overexpression of wild type Hsp27 in mutant MERRF cybrids significantly decreased cell death under staurosporine (STS) treatment, suggesting a protective function of Hsp27 in cells harboring the A8344G mutation of mtDNA. Meanwhile, reverse transcriptase PCR showed no difference in the mRNA level between normal and mutant cybrids, indicating that alterations may occur at the protein level. Evidenced by the decreased levels of Hsp27 upon treatment with proteasome inhibitor, starvation and rapamycin and the accumulation of Hsp27 upon lysosomal inhibitor treatment; Hsp27 may be degraded by the autophagic pathway. In addition, the increased formation of LC3-II and autophagosomes was found in MERRF cybrids under the basal condition, indicating a constitutively-activated autophagic pathway. It may explain, at least partially, the faster turnover of Hsp27 in MERRF cybrids. This study provides information for us to understand that Hsp27 is degraded through the autophagic pathway and that Hsp27 may have a protective role in MERRF cells. Regulating Hsp27 and the autophagic pathway might help develop therapeutic solutions for treatment of MERRF syndrome in the future.


Assuntos
Autofagia/genética , DNA Mitocondrial/genética , Proteínas de Choque Térmico HSP27/metabolismo , Mutação Puntual , Apoptose , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia , Caspase 3/metabolismo , Células Cultivadas , Regulação para Baixo , Ativação Enzimática , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico , Humanos , Síndrome MERRF/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Chaperonas Moleculares , Proteólise , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...