Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766154

RESUMO

Substantial numbers of somatic mutations have been found to accumulate with age in different human tissues. Clonal cellular amplification of some of these mutations can cause cancer and other diseases. However, it is as yet unclear if and to what extent an increased burden of random mutations can affect cellular function without clonal amplification. We tested this in cell culture, which avoids the limitation that an increased mutation burden in vivo typically leads to cancer. We performed single-cell whole-genome sequencing of primary fibroblasts from DNA mismatch repair (MMR) deficient Msh2-/- mice and littermate control animals after long-term passaging. Apart from analyzing somatic mutation burden we analyzed clonality, mutational signatures, and hotspots in the genome, characterizing the complete landscape of somatic mutagenesis in normal and MMR-deficient mouse primary fibroblasts during passaging. While growth rate of Msh2-/- fibroblasts was not significantly different from the controls, the number of de novo single-nucleotide variants (SNVs) increased linearly up until at least 30,000 SNVs per cell, with the frequency of small insertions and deletions (INDELs) plateauing in the Msh2-/- fibroblasts to about 10,000 INDELS per cell. We provide evidence for negative selection and large-scale mutation-driven population changes, including significant clonal expansion of preexisting mutations and widespread cell-strain-specific hotspots. Overall, our results provide evidence that increased somatic mutation burden drives significant cell evolutionary changes in a dynamic cell culture system without significant effects on growth. Since similar selection processes against mutations preventing organ and tissue dysfunction during aging are difficult to envision, these results suggest that increased somatic mutation burden can play a causal role in aging and diseases other than cancer.

2.
PLoS Genet ; 14(8): e1007572, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089114

RESUMO

Centromere is a specialized chromatin domain that plays a vital role in chromosome segregation. In most eukaryotes, centromere is surrounded by the epigenetically distinct heterochromatin domain. Heterochromatin has been shown to contribute to centromere function, but the precise role of heterochromatin in centromere specification remains elusive. Centromeres in most eukaryotes, including fission yeast (Schizosaccharomyces pombe), are defined epigenetically by the histone H3 (H3) variant CENP-A. In contrast, the budding yeast Saccharomyces cerevisiae has genetically-defined point centromeres. The transition between regional centromeres and point centromeres is considered as one of the most dramatic evolutionary events in centromere evolution. Here we demonstrated that Cse4, the budding yeast CENP-A homolog, can localize to centromeres in fission yeast and partially substitute fission yeast CENP-ACnp1. But overexpression of Cse4 results in its localization to heterochromatic regions. Cse4 is subject to efficient ubiquitin-dependent degradation in S. pombe, and its N-terminal domain dictates its centromere distribution via ubiquitination. Notably, without heterochromatin and RNA interference (RNAi), Cse4 fails to associate with centromeres. We showed that RNAi-dependent heterochromatin mediates centromeric localization of Cse4 by protecting Cse4 from ubiquitin-dependent degradation. Heterochromatin also contributes to the association of native CENP-ACnp1 with centromeres via the same mechanism. These findings suggest that protection of CENP-A from degradation by heterochromatin is a general mechanism used for centromere assembly, and also provide novel insights into centromere evolution.


Assuntos
Proteína Centromérica A/metabolismo , Centrômero/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/genética , Interferência de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Variação Genética , Histonas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitinação
3.
Proc Natl Acad Sci U S A ; 114(47): 12524-12529, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109278

RESUMO

During DNA replication, chromatin is disrupted ahead of the replication fork, and epigenetic information must be restored behind the fork. How epigenetic marks are inherited through DNA replication remains poorly understood. Histone H3 lysine 9 (H3K9) methylation and histone hypoacetylation are conserved hallmarks of heterochromatin. We previously showed that the inheritance of H3K9 methylation during DNA replication depends on the catalytic subunit of DNA polymerase epsilon, Cdc20. Here we show that the histone-fold subunit of Pol epsilon, Dpb4, interacts an uncharacterized small histone-fold protein, SPCC16C4.22, to form a heterodimer in fission yeast. We demonstrate that SPCC16C4.22 is nonessential for viability and corresponds to the true ortholog of Dpb3. We further show that the Dpb3-Dpb4 dimer associates with histone deacetylases, chromatin remodelers, and histones and plays a crucial role in the inheritance of histone hypoacetylation in heterochromatin. We solve the 1.9-Å crystal structure of Dpb3-Dpb4 and reveal that they form the H2A-H2B-like dimer. Disruption of Dpb3-Dpb4 dimerization results in loss of heterochromatin silencing. Our findings reveal a link between histone deacetylation and H3K9 methylation and suggest a mechanism for how two processes are coordinated during replication. We propose that the Dpb3-Dpb4 heterodimer together with Cdc20 serves as a platform for the recruitment of chromatin modifiers and remodelers that mediate heterochromatin assembly during DNA replication, and ensure the faithful inheritance of epigenetic marks in heterochromatin.


Assuntos
Proteínas Cdc20/química , DNA Polimerase II/química , Epigênese Genética , Heterocromatina/química , Histonas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/genética , Animais , Sítios de Ligação , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Replicação do DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...