Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Surg Endosc ; 38(9): 4869-4879, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39160306

RESUMO

BACKGROUND: Artificial intelligence (AI) models have been applied in various medical imaging modalities and surgical disciplines, however the current status and progress of ultrasound-based AI models within hepatopancreatobiliary surgery have not been evaluated in literature. Therefore, this review aimed to provide an overview of ultrasound-based AI models used for hepatopancreatobiliary surgery, evaluating current advancements, validation, and predictive accuracies. METHOD: Databases PubMed, EMBASE, Cochrane, and Web of Science were searched for studies using AI models on ultrasound for patients undergoing hepatopancreatobiliary surgery. To be eligible for inclusion, studies needed to apply AI methods on ultrasound imaging for patients undergoing hepatopancreatobiliary surgery. The Probast risk of bias tool was used to evaluate the methodological quality of AI methods. RESULTS: AI models have been primarily used within hepatopancreatobiliary surgery, to predict tumor recurrence, differentiate between tumoral tissues, and identify lesions during ultrasound imaging. Most studies have combined radiomics with convolutional neural networks, with AUCs up to 0.98. CONCLUSION: Ultrasound-based AI models have demonstrated promising accuracies in predicting early tumoral recurrence and even differentiating between tumoral tissue types during and after hepatopancreatobiliary surgery. However, prospective studies are required to evaluate if these results will remain consistent and externally valid.


Assuntos
Inteligência Artificial , Ultrassonografia , Humanos , Ultrassonografia/métodos , Procedimentos Cirúrgicos do Sistema Digestório/métodos
2.
PLoS One ; 16(10): e0258296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710123

RESUMO

OBJECTIVES: 3D-printed (3DP) customized temporary cranial protection solutions following decompressive craniectomy (DC) are currently not widely practiced. A pilot trial of a 3DP customized head protection prototype device (HPPD) on 10 subjects was conducted during the subacute rehabilitation phase. MATERIALS AND METHODS: Subjects > 30 days post-DC with stable cranial flaps and healed wounds were enrolled. HPPD were uniquely designed based on individuals' CT scan, where the base conformed to the surface of the individual's skin covering the cranial defect, and the lateral surface three-dimensionally mirrored, the contralateral healthy head. Each HPPD was fabricated using the fused deposition modeling method. These HPPD were then fitted on subjects using a progressive wearing schedule and monitored over 1, 2, 4, 6 and 8 follow-up (FU) weeks. Outcomes during FU included; reported wearing time/day (hours), subjective pain, discomfort, pruritus, dislodgment, cosmesis ratings; and observed wound changes. The primary outcome was safety and tolerability without pain or wound changes within 30 minutes of HPPD fitting. RESULTS: In all, 10 enrolled subjects received 12 HPPDs [5/10 male, mean (SD) age 46 (14) years, mean (SD) duration post-DC 110 days (76)] and all subjects tolerated 30 minutes of initial HPPD fitting without wound changes. The mean (SD) HPPD mass was 61.2 g (SD 19.88). During 8 weeks of FU, no HPPD-related skin dehiscence was observed, while 20% (2/10) had transient skin imprints, and 80% (8/10) reported self-limiting pressure and pruritis. DISCUSSION: Findings from this exploratory study demonstrated preliminary feasibility and safety for a customized 3DP HPPD for temporary post-DC head protection over 8 weeks of follow-up. Monitoring and regular rest breaks during HPPD wear were important to prevent skin complications. CONCLUSION: This study suggests the potential for wider 3DP technology applications to provide cranial protection for this vulnerable population.


Assuntos
Lesões Encefálicas/cirurgia , Craniectomia Descompressiva , Impressão Tridimensional , Crânio/cirurgia , Adulto , Idoso , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/reabilitação , Cognição , Estudos de Coortes , Craniectomia Descompressiva/efeitos adversos , Estudos de Viabilidade , Feminino , Dispositivos de Proteção da Cabeça , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora , Avaliação de Resultados em Cuidados de Saúde , Projetos Piloto , Crânio/fisiopatologia
3.
ACS Biomater Sci Eng ; 2(10): 1752-1762, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33440473

RESUMO

Oxygen inhibition is a phenomenon that directly impacts the print fidelity of 3D biofabricated and photopolymerized hydrogel constructs. It typically results in the undesirable physical collapse of fabricated constructs due to impaired cross-linking, and is an issue that generally remains unreported in the literature. In this study, we describe a systematic approach to minimizing oxygen inhibition in photopolymerized gelatin-methacryloyl (Gel-MA)-based hydrogel constructs, by comparing a new visible-light initiating system, Vis + ruthenium (Ru)/sodium persulfate (SPS) to more conventionally adopted ultraviolet (UV) + Irgacure 2959 system. For both systems, increasing photoinitiator concentration and light irradiation intensity successfully reduced oxygen inhibition. However, the UV + I2959 system was detrimental to cells at both high I2959 concentrations and UV light irradiation intensities. The Vis + Ru/SPS system yielded better cell cyto-compatibility, where encapsulated cells remained >85% viable even at high Ru/SPS concentrations and visible-light irradiation intensities for up to 21 days, further highlighting the potential of this system to biofabricate cell-laden constructs with high shape fidelity, cell viability, and metabolic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA