Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 13(24): 3885-3894, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30291795

RESUMO

A remarkable intermolecular dehydrative coupling reaction with the formation of a C-C bond was found for the vinylidene complex 2 a, yielding the dinuclear bisvinylidene complex 4 a. Complex 2 a containing 1-hydroxyindan moiety was first formed from the reaction of o-propynyl benzaldehyde 1 a with [Ru]-Cl ([Ru]=Cp(PPh3 )2 Ru) by a cyclization process. For analogous aldehyde 1 b containing an additional 1,3-dioxolane group on the aryl ring, similar intermolecular coupling yields the dinuclear bisvinylidene complex 4 b. However, the fluoro group on the aryl ring in aldehyde 1 c inhibits the coupling reaction, giving only the vinylidene complex 2 c. For the reactions of [Ru]-Cl in MeOH with compounds 1 f, 1 g and 1 h, each with a ketone functionality, cyclization gives vinylidene complexes 2 f, 2 g and 2 h, respectively. However, no similar intermolecular coupling was observed, instead, the intramolecular dehydration yields 8 f, 8 g and 8 h, respectively. In CDCl3 , catalytic cyclization is observed for the o-propynylphenyl ketone 1 h with [Ru]-Cl at 50 °C giving the isochromene products 14 h. Furthermore, treatment of the o-propynylaryl α,ß-unsaturated ketones 1 k-m and 1 n with [Ru]-Cl in MeOH affords the corresponding vinylidene complexes 10 k-m and 11 n each with 1-benzosuberone moiety in the presence of NH4 PF6 . These intramolecular cyclization products were formed by the addition of Cß onto the terminal carbon of the alkene moiety. All these reaction products were characterized by spectroscopic methods. In addition, structures of complexes 4 a, and 10 l were confirmed by single crystal X-ray diffraction analysis.

2.
J Org Chem ; 81(11): 4494-505, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27132939

RESUMO

Cyclization of the ether enyne 1 catalyzed by [Ru]NCCH3(+) ([Ru] = Cp(PPh3)2Ru) in CHCl3 generates a diastereomeric mixture of the substituted tetrahydropyran 11. Presumably, formation of an allenylidene complex is followed by a cyclization by nucleophilic addition of the olefinic group to Cγ of the ligand giving a boat-like six-membered ring. The diastereoselectivity is controlled by the 1,3-diaxial interaction. The vinylidene complex 7, a precursor of 11, is obtained from 1 and [Ru]Cl. In a mixture of MeOH/CHCl3, the domino cyclization of 1 further affords 14a, a chromene product catalytically. The second cyclization proceeds via nucleophilic addition of the resulting olefinic unit to Cα of 7. But the ether enyne 3 with a cyclopentyl ring on the olefinic unit undergoes only single cyclization due to steric effect. The propargyl alcohol and the two terminal methyl groups on the olefinic unit shape the cyclization. Thus, similar all-carbon 1,n-enynes (n = 7, 8, 9) 4-6 each with an aromatic linker undergo direct domino cyclization catalyzed by [Ru]NCCH3(+), to give derivatives of tricyclic fluorene, phenanthrene and dibenzo[7]annulene, respectively, with no intermediate observed.

3.
Chem Asian J ; 11(7): 1098-106, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26865008

RESUMO

In an investigation into the chemical reactions of N-propargyl pyrroles 1 a-c, containing aldehyde, keto, and ester groups on the pyrrole ring, with [Ru]-Cl ([Ru]=Cp(PPh3 )2 Ru; Cp=C5 H5 ), an aldehyde group in the pyrrole ring is found to play a crucial role in stimulating the cyclization reaction. The reaction of 1 a, containing an aldehyde group, with [Ru]-Cl in the presence of NH4 PF6 yields the vinylidene complex 2 a, which further reacts with allyl amine to give the carbene complex 6 a with a pyrrolizine group. However, if 1 a is first reacted with allyl amine to yield the iminenyne 8 a, then the reaction of 8 a with [Ru]-Cl in the presence of NH4 PF6 yields the ruthenium complex 9 a, containing a cationic pyrrolopyrazinium group, which has been fully characterized by XRD analysis. These results can be adequately explained by coordination of the triple bond of the propargyl group to the ruthenium metal center first, followed by two processes, that is, formation of a vinylidene intermediate or direct nucleophilic attack. Additionally, the deprotonation of 2 a by R4 NOH yields the neutral acetylide complex 3 a. In the presence of NH4 PF6 , the attempted alkylation of 3 a resulted in the formation the Fischer-type amino-carbene complex 5 a as a result of the presence of NH3, which served as a nucleophile. With KPF6, the alkylation of 3 a with ethyl and benzyl bromoacetates afforded the disubstituted vinylidene complexes 10 a and 11 a, containing ester groups, which underwent deprotonation reactions to give the furyl complexes 12 a and 13 a, respectively. For 13 a, containing an O-benzyl group, subsequent 1,3-migration of the benzyl group was observed to yield product 14 a with a lactone unit. Similar reactivity was not observed for the corresponding N-propargyl pyrroles 1 b and 1 c, which contained keto and ester groups, respectively, on the pyrrole ring.


Assuntos
Compostos Organometálicos/química , Pirróis/química , Rutênio/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...