Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 11(2): e1001494, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468593

RESUMO

In Drosophila postembryonic neuroblasts, transition in gene expression programs of a cascade of transcription factors (also known as the temporal series) acts together with the asymmetric division machinery to generate diverse neurons with distinct identities and regulate the end of neuroblast proliferation. However, the underlying mechanism of how this "temporal series" acts during development remains unclear. Here, we show that Hh signaling in the postembryonic brain is temporally regulated; excess (earlier onset of) Hh signaling causes premature neuroblast cell cycle exit and under-proliferation, whereas loss of Hh signaling causes delayed cell cycle exit and excess proliferation. Moreover, the Hh pathway functions downstream of Castor but upstream of Grainyhead, two components of the temporal series, to schedule neuroblast cell cycle exit. Interestingly, hh is likely a target of Castor. Hence, Hh signaling provides a link between the temporal series and the asymmetric division machinery in scheduling the end of neurogenesis.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Drosophila , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Hedgehog/genética , Hibridização In Situ , Neurônios/citologia , Neurônios/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
2.
Wiley Interdiscip Rev Dev Biol ; 1(2): 307-14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23801445

RESUMO

Stem cells, which can self-renew and give rise to differentiated daughters, are responsible for the generation of diverse cell types during development and the maintenance of tissue/organ homeostasis in adulthood. Thus, the precise regulation of stem-cell self-renewal and proliferative potential is a key aspect of development. The stem-cell niche confers such control by concentrating localized factors including signaling molecules which favor stem-cell self-renew and regulate stem-cell proliferation in line with developmental programs. In contrast, Drosophila neuroblasts (NBs), often referred to as neural stem cells/progenitors, can undergo asymmetric cell division to self-renew and produce differentiated daughters even in isolation (or in culture). Furthermore, these isolated NBs can also progress through an intrinsically regulated temporal series (of transcription factor expression) to generate diverse cell types in vitro. These data argue that NBs may depend only to a limited extent, if at all, on local environment (a niche) for their maintenance. On the other hand, there is increasing evidence which indicate that the interaction between NBs and their surrounding glia is critical for the control of NB proliferative potential and these glia, in conjunction with systemic regulation, perform the niche function to regulate NB behavior. Thus, these observations emphasize the importance of coordinated local microenvironment (niche activity) and systemic environment (global activity) on the regulation of NB behavior in vivo, and suggest NBs may conform to an alternative stem-cell/progenitor maintenance model.


Assuntos
Drosophila/embriologia , Células-Tronco Neurais/citologia , Nicho de Células-Tronco , Animais , Diferenciação Celular , Proliferação de Células , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Dev Cell ; 19(5): 778-85, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21074726

RESUMO

How a cell decides to self-renew or differentiate is a critical issue in stem cell and cancer biology. Atypical protein kinase C (aPKC) promotes self-renewal of Drosophila larval brain neural stem cells, neuroblasts. However, it is unclear how aPKC cortical polarity and protein levels are regulated. Here, we have identified a zinc-finger protein, Zif, which is required for the expression and asymmetric localization of aPKC. aPKC displays ectopic cortical localization with upregulated protein levels in dividing zif mutant neuroblasts, leading to neuroblast overproliferation. We show that Zif is a transcription factor that directly represses aPKC transcription. We further show that Zif is phosphorylated by aPKC both in vitro and in vivo. Phosphorylation of Zif by aPKC excludes it from the nucleus, leading to Zif inactivation in neuroblasts. Thus, reciprocal repression between Zif and aPKC act as a critical regulatory mechanism for establishing cell polarity and controlling neuroblast self-renewal.


Assuntos
Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Células-Tronco Neurais , Proteína Quinase C/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Fosforilação , Proteína Quinase C/genética , Fatores de Transcrição/genética
4.
J Cell Sci ; 123(Pt 16): 2697-707, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20647374

RESUMO

Skeletal muscles arise by cellular differentiation and regulated gene expression. Terminal differentiation programmes such as muscle growth, extension and attachment to the epidermis, lead to maturation of the muscles. These events require changes in chromatin organization as genes are differentially regulated. Here, we identify and characterise muscle wasted (mute), a novel component of the Drosophila histone locus body (HLB). We demonstrate that a mutation in mute leads to severe loss of muscle mass and an increase in levels of normal histone transcripts. Importantly, Drosophila Myocyte enhancer factor 2 (Mef2), a central myogenic differentiation factor, and how, an RNA binding protein required for muscle and tendon cell differentiation, are downregulated. Mef2 targets are, in turn, misregulated. Notably, the degenerating muscles in mute mutants show aberrant localisation of heterochromatin protein 1 (HP1). We further show a genetic interaction between mute and the Stem-loop binding protein (Slbp) and a loss of muscle striations in Lsm11 mutants. These data demonstrate a novel role of HLB components and histone processing factors in the maintenance of muscle integrity. We speculate that mute regulates terminal muscle differentiation possibly through heterochromatic reorganisation.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Histonas/metabolismo , Músculo Esquelético/fisiologia , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Histonas/genética , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo
5.
PLoS One ; 5(2): e9374, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20186342

RESUMO

Drosophila body wall muscles are multinucleated syncytia formed by successive fusions between a founder myoblast and several fusion competent myoblasts. Initial fusion gives rise to a bi/trinucleate precursor followed by more fusion cycles forming a mature muscle. This process requires the functions of various molecules including the transmembrane myoblast attractants Dumbfounded (Duf) and its paralogue Roughest (Rst), a scaffold protein Rolling pebbles (Rols) and a guanine nucleotide exchange factor Loner. Fusion completely fails in a duf, rst mutant, and is blocked at the bi/trinucleate stage in rols and loner single mutants. We analysed the transmembrane and intracellular domains of Duf, by mutating conserved putative signaling sites and serially deleting the intracellular domain. These were tested for their ability to translocate and interact with Rols and Loner and to rescue the fusion defect in duf, rst mutant embryos. Studying combinations of double mutants, further tested the function of Rols, Loner and other fusion molecules. Here we show that serial truncations of the Duf intracellular domain successively compromise its function to translocate and interact with Rols and Loner in addition to affecting myoblast fusion efficiency in embryos. Putative phosphorylation sites function additively while the extreme C terminus including a PDZ binding domain is dispensable for its function. We also show that fusion is completely blocked in a rols, loner double mutant and is compromised in other double mutants. These results suggest an additive function of the intracellular domain of Duf and an early function of Rols and Loner which is independent of Duf.


Assuntos
Proteínas de Drosophila/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , Animais , Sítios de Ligação/genética , Western Blotting , Fusão Celular , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Imunoprecipitação , Proteínas de Membrana/genética , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Mutação , Mioblastos/citologia , Ligação Proteica , Fatores de Tempo , Transfecção
6.
Dev Biol ; 336(2): 156-68, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19782677

RESUMO

The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other. Here, we investigated the requirement of genes previously known to play key roles in sibling cell fate specification such as members of the Notch signalling pathway, e.g., Notch (N), Delta (Dl), and kuzbanian (kuz) and a crucial regulator of asymmetric cell division, inscuteable (insc) throughout lineage progression of 4 neuroblasts (NB1-1, MP2, NB4-2, and NB7-1). Notch-mediated cell fate specification defects were cell-autonomous and were observed in all neuroblast lineages even in cells born from late ganglion mother cells (GMC) within the lineages. We also show that Dl functions non-autonomously during NB lineage progression and clonal cells do not require Dl from within the clone. This suggests that within a NB lineage Dl is dispensable for sibling cell fate specification. Furthermore, we provide evidence that kuz is involved in sibling cell fate specification in the central nervous system. It is cell-autonomously required in the same postmitotic cells which also depend on Notch function. This indicates that KUZ is required to facilitate a functional Notch signal in the Notch-dependent cell for correct cell fate specification. Finally, we show that three neuroblast lineages (NB1-1, NB4-2, and NB7-1) require insc function for sibling cell fate specification in cells born from early GMCs whereas insc is not required in cells born from later GMCs of the same lineages. Thus, there is differential requirement for insc for cell fate specification depending on the stage of lineage progression of NBs.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Desintegrinas/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Proteínas de Membrana/fisiologia , Metaloendopeptidases/fisiologia , Neurônios/citologia , Receptores Notch/fisiologia , Animais , Sequência de Bases , Linhagem da Célula , Proteínas do Citoesqueleto/genética , Primers do DNA , Desintegrinas/genética , Proteínas de Drosophila/genética , Embrião não Mamífero/citologia , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Reação em Cadeia da Polimerase , Receptores Notch/genética , Transdução de Sinais
7.
Genes Dev ; 23(3): 359-72, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19204120

RESUMO

Asymmetric localization of cell fate determinants is a crucial step in neuroblast asymmetric divisions. Whereas several protein kinases have been shown to mediate this process, no protein phosphatase has so far been implicated. In a clonal screen of larval neuroblasts we identified the evolutionarily conserved Protein Phosphatase 4 (PP4) regulatory subunit PP4R3/Falafel (Flfl) as a key mediator specific for the localization of Miranda (Mira) and associated cell fate determinants during both interphase and mitosis. Flfl is predominantly nuclear during interphase/prophase and cytoplasmic after nuclear envelope breakdown. Analyses of nuclear excluded as well as membrane targeted versions of the protein suggest that the asymmetric cortical localization of Mira and its associated proteins during mitosis depends on cytoplasmic/membrane-associated Flfl, whereas nuclear Flfl is required to exclude the cell fate determinant Prospero (Pros), and consequently Mira, from the nucleus during interphase/prophase. Attenuating the function of either the catalytic subunit of PP4 (PP4C; Pp4-19C in Drosophila) or of another regulatory subunit, PP4R2 (PPP4R2r in Drosophila), leads to similar defects in the localization of Mira and associated proteins. Flfl is capable of directly interacting with Mira, and genetic analyses indicate that flfl acts in parallel to or downstream from the tumor suppressor lethal (2) giant larvae (lgl). Our findings suggest that Flfl may target PP4 to the MIra protein complex to facilitate dephosphorylation step(s) crucial for its cortical association/asymmetric localization.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Animais Geneticamente Modificados , Ciclo Celular , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Divisão Celular , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Feminino , Genes de Insetos , Masculino , Complexos Multiproteicos , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Subunidades Proteicas , Células-Tronco/citologia , Células-Tronco/metabolismo , Frações Subcelulares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Dev Biol ; 324(2): 177-91, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18831969

RESUMO

The neural precursor cells (sensory organ precursor cell (SOP)) of the external sense organs of Drosophila melanogaster arise from proneural clusters, which are defined through the expression pattern of proneural genes such as the genes of the achaete-scute complex (AS-C). The activities of these genes enable each cell within a cluster to become the SOP. A selection process mediated by the Notch signalling pathway and Extramacrochaetae selects a defined number of cells within the proneural cluster to realise the SOP fate, while it redirects the rest to the epidermoblast fate. Here we report a new function required for SOP determination mediated by the zinc finger transcription factor Klumpfuss (Klu). Klu participates in a novel mechanism that appears to regulate the expression as well as the activity of the proneural proteins. Our analysis indicates that Klu is a repressor of transcription, which acts via a double-negative loop to promote SOP formation: it suppresses the expression of an unidentified antagonist of proneural activity. We present a detailed structure function analysis that identifies functionally important domains within Klu.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Órgãos dos Sentidos/embriologia , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/embriologia , Genes de Insetos , Mutação , Neurônios/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Dedos de Zinco
9.
Curr Opin Neurobiol ; 18(1): 4-11, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18513950

RESUMO

The astonishing cellular diversity in the central nervous system (CNS) arises from neural progenitors which can undergo different modes of symmetric and asymmetric divisions to self-renew as well as produce differentiated neuronal and glial progeny. Drosophila CNS neural progenitor cells, neuroblasts, have been utilised as a model to stimulate the understanding of the processes of asymmetric division, generation of neuronal lineages and, more recently, stem cell biology in vertebrates. Here we review some recent developments involving Drosophila and mammalian neural progenitor cells, highlighting some similarities and differences in the mechanisms that regulate their divisions during neurogenesis.


Assuntos
Diferenciação Celular/genética , Divisão Celular/genética , Sistema Nervoso Central/embriologia , Neurônios/metabolismo , Células-Tronco/metabolismo , Animais , Linhagem da Célula/genética , Polaridade Celular/genética , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Neurônios/citologia , Fuso Acromático/genética , Células-Tronco/citologia
10.
BMC Dev Biol ; 8: 37, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18387173

RESUMO

BACKGROUND: The loco gene encodes several different isoforms of a regulator of G-protein signalling. These different isoforms of LOCO are part of a pathway enabling cells to respond to external signals. LOCO is known to be required at various developmental stages including neuroblast division, glial cell formation and oogenesis. Less is known about LOCO and its involvement in male development therefore to gain further insight into the role of LOCO in development we carried out a genetic screen and analysed males with reduced fertility. RESULTS: We identified a number of lethal loco mutants and four semi-lethal lines, which generate males with reduced fertility. We have identified a fifth loco transcript and show that it is differentially expressed in developing pupae. We have characterised the expression pattern of all loco transcripts during pupal development in the adult testes, both in wild type and loco mutant strains. In addition we also show that there are various G-protein alpha subunits expressed in the testis all of which may be potential binding partners of LOCO. CONCLUSION: We propose that the male sterility in the new loco mutants result from a failure of accurate morphogenesis of the adult reproductive system during metamorphosis, we propose that this is due to a loss of expression of loco c3. Thus, we conclude that specific isoforms of loco are required for the differentiation of the male gonad and genital disc.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Animais , Teste de Complementação Genética , Genitália Masculina/crescimento & desenvolvimento , Infertilidade Masculina/genética , Masculino , Metamorfose Biológica/genética , Mutação , Fenótipo , Reação em Cadeia da Polimerase , Isoformas de Proteínas/genética , Análise de Sequência de DNA
11.
PLoS Genet ; 4(2): e36, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18282112

RESUMO

The localization of specific mRNAs can establish local protein gradients that generate and control the development of cellular asymmetries. While all evidence underscores the importance of the cytoskeleton in the transport and localization of RNAs, we have limited knowledge of how these events are regulated. Using a visual screen for motile proteins in a collection of GFP protein trap lines, we identified the Drosophila IGF-II mRNA-binding protein (Imp), an ortholog of Xenopus Vg1 RNA binding protein and chicken zipcode-binding protein. In Drosophila, Imp is part of a large, RNase-sensitive complex that is enriched in two polarized cell types, the developing oocyte and the neuron. Using time-lapse confocal microscopy, we establish that both dynein and kinesin contribute to the transport of GFP-Imp particles, and that regulation of transport in egg chambers appears to differ from that in neurons. In Drosophila, loss-of-function Imp mutations are zygotic lethal, and mutants die late as pharate adults. Imp has a function in Drosophila oogenesis that is not essential, as well as functions that are essential during embryogenesis and later development. Germline clones of Imp mutations do not block maternal mRNA localization or oocyte development, but overexpression of a specific Imp isoform disrupts dorsal/ventral polarity. We report here that loss-of-function Imp mutations, as well as Imp overexpression, can alter synaptic terminal growth. Our data show that Imp is transported to the neuromuscular junction, where it may modulate the translation of mRNA targets. In oocytes, where Imp function is not essential, we implicate a specific Imp domain in the establishment of dorsoventral polarity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Oogênese/fisiologia , Terminações Pré-Sinápticas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Transporte Biológico Ativo , Padronização Corporal , Primers do DNA/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Feminino , Expressão Gênica , Genes de Insetos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Mutação , Oogênese/genética , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
12.
J Cell Biol ; 180(2): 267-72, 2008 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-18209103

RESUMO

Over the past decade, many of the key components of the genetic machinery that regulate the asymmetric division of Drosophila melanogaster neural progenitors, neuroblasts, have been identified and their functions elucidated. Studies over the past two years have shown that many of these identified components act to regulate the self-renewal versus differentiation decision and appear to function as tumor suppressors during larval nervous system development. In this paper, we highlight the growing number of molecules that are normally considered to be key regulators of cell cycle events/progression that have recently been shown to impinge on the neuroblast asymmetric division machinery to control asymmetric protein localization and/or the decision to self-renew or differentiate.


Assuntos
Proteínas de Drosophila/análise , Drosophila melanogaster/química , Drosophila melanogaster/citologia , Neoplasias/metabolismo , Animais , Ciclo Celular , Divisão Celular , Drosophila melanogaster/metabolismo , Humanos , Larva , Neurônios/citologia
13.
Development ; 134(21): 3781-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17933789

RESUMO

Asymmetric cell divisions generate cell fate diversity during both invertebrate and vertebrate development. Drosophila neural progenitors or neuroblasts (NBs) each divide asymmetrically to produce a larger neuroblast and a smaller ganglion mother cell (GMC). The asymmetric localisation of neural cell fate determinants and their adapter proteins to the neuroblast cortex during mitosis facilitates their preferential segregation to the GMC upon cytokinesis. In this study we report a novel role for the anaphase-promoting complex/cyclosome (APC/C) during this process. Attenuation of APC/C activity disrupts the asymmetric localisation of the adapter protein Miranda and its associated cargo proteins Staufen, Prospero and Brat, but not other components of the asymmetric division machinery. We demonstrate that Miranda is ubiquitylated via its C-terminal domain; removal of this domain disrupts Miranda localisation and replacement of this domain with a ubiquitin moiety restores normal asymmetric Miranda localisation. Our results demonstrate that APC/C activity and ubiquitylation of Miranda are required for the asymmetric localisation of Miranda and its cargo proteins to the NB cortex.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Animais Geneticamente Modificados , Subunidade Apc5 do Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Divisão Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Ligação Proteica , Especificidade por Substrato , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/genética
14.
Nature ; 449(7158): 96-100, 2007 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-17805297

RESUMO

Self-renewal and differentiation are cardinal features of stem cells. Asymmetric cell division provides one fundamental mechanism by which stem cell self-renewal and differentiation are balanced. A failure of this balance could lead to diseases such as cancer. During asymmetric division of stem cells, factors controlling their self-renewal and differentiation are unequally segregated between daughter cells. Numb is one such factor that is segregated to the differentiating daughter cell during the stem-cell-like neuroblast divisions in Drosophila melanogaster, where it inhibits self-renewal. The localization and function of Numb is cell-cycle-dependent. Here we show that Polo (ref. 13), a key cell cycle regulator, the mammalian counterparts of which have been implicated as oncogenes as well as tumour suppressors, acts as a tumour suppressor in the larval brain. Supernumerary neuroblasts are produced at the expense of neurons in polo mutants. Polo directly phosphorylates Partner of Numb (Pon, ref. 16), an adaptor protein for Numb, and this phosphorylation event is important for Pon to localize Numb. In polo mutants, the asymmetric localization of Pon, Numb and atypical protein kinase C are disrupted, whereas other polarity markers are largely unaffected. Overexpression of Numb suppresses neuroblast overproliferation caused by polo mutations, suggesting that Numb has a major role in mediating this effect of Polo. Our results reveal a biochemical link between the cell cycle and the asymmetric protein localization machinery, and indicate that Polo can inhibit progenitor self-renewal by regulating the localization and function of Numb.


Assuntos
Proteínas de Transporte/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hormônios Juvenis/metabolismo , Neurônios/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/citologia , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular , Divisão Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Expressão Gênica , Larva/citologia , Larva/metabolismo , Neurônios/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Fuso Acromático/metabolismo , Células-Tronco/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
J Neurosci ; 27(32): 8563-70, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-17687034

RESUMO

Mutations in the parkin gene are a predominant cause of familial parkinsonism. Although initially described as a recessive disorder, emerging evidence suggest that single parkin mutations alone may confer increased susceptibility to Parkinson's disease. To better understand the effects of parkin mutations in vivo, we generated transgenic Drosophila overexpressing two human parkin missense mutants, R275W and G328E. Transgenic flies that overexpress R275W, but not wild-type or G328E, human parkin display an age-dependent degeneration of specific dopaminergic neuronal clusters and concomitant locomotor deficits that accelerate with age or in response to rotenone treatment. Furthermore, R275W mutant flies also exhibit prominent mitochondrial abnormalities in their flight muscles. Interestingly, these defects caused by the expression of human R275W parkin are highly similar to those triggered by the loss of endogenous parkin in parkin null flies. Together, our results provide the first in vivo evidence demonstrating that parkin R275W mutant expression mediates pathogenic outcomes and suggest the interesting possibility that select parkin mutations may directly exert neurotoxicity in vivo.


Assuntos
Dopamina/fisiologia , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Mitocôndrias/patologia , Mutação , Degeneração Neural/metabolismo , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética , Substituição de Aminoácidos/genética , Animais , Animais Geneticamente Modificados , Arginina/genética , Dopamina/genética , Drosophila , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Mitocôndrias/genética , Degeneração Neural/genética , Degeneração Neural/patologia , Triptofano/genética , Ubiquitina-Proteína Ligases/fisiologia
16.
Development ; 134(15): 2807-13, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17611224

RESUMO

Trichomes are cytoplasmic extrusions of epidermal cells. The molecular mechanisms that govern the differentiation of trichome-producing cells are conserved across species as distantly related as mice and flies. Several signaling pathways converge onto the regulation of a conserved target gene, shavenbaby (svb, ovo), which, in turn, stimulates trichome formation. The Drosophila ventral epidermis consists of the segmental alternation of two cell types that produce either naked cuticle or trichomes called denticles. The binary choice to produce naked cuticle or denticles is affected by the transcriptional regulation of svb, which is sufficient to cell-autonomously direct denticle formation. The expression of svb is regulated by the opposing gradients of two signaling molecules--the epidermal growth factor receptor (Egfr) ligand Spitz (Spi), which activates svb expression, and Wingless (Wg), which represses it. It has remained unclear how these opposing signals are integrated to establish a distinct domain of svb expression. We show that the expression of the high mobility group (HMG)-domain protein SoxNeuro (SoxN) is activated by Spi, and repressed by Wg, signaling. SoxN is necessary and sufficient to cell-autonomously direct the expression of svb. The closely related protein Dichaete is co-regulated with SoxN and has a partially redundant function in the activation of svb expression. In addition, we show that SoxN and Dichaete function upstream of Wg and antagonize Wg pathway activity. This suggests that the expression of svb in a discreet domain is resolved at the level of SoxN and Dichaete.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Células Epidérmicas , Epiderme/embriologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Domínios HMG-Box/genética , Domínios HMG-Box/fisiologia , Proteínas de Grupo de Alta Mobilidade/genética , Modelos Biológicos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Fatores de Transcrição SOX , Transdução de Sinais/genética , Fatores de Transcrição/genética , Proteína Wnt1
17.
Dev Biol ; 307(2): 380-93, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17540360

RESUMO

Metamorphosis involves the destruction of larval, the formation of adult and the transformation of larval into adult tissues. In this study, we demonstrate the role of the Drosophila nuclear proteins EAST and Chromator in tissue destruction and remodeling. To better understand the function of east, we performed a yeast two-hybrid screen and identified the euchromatin associated protein Chromator as a candidate interactor. To analyze the functional significance of our two-hybrid data, we generated a set of novel pupal lethal Chro alleles by P-element excision. The pupal lethal Chro mutants resemble lethal east alleles as homozygous mutants develop into pharates with normal looking body parts, but fail to eclose. The eclosion defect of the Chro alleles is rescued in an east heterozygous background, indicating antagonistic genetic interactions between the two genes. Live cell imaging was applied to study muscle development during metamorphosis. Consistent with the eclosion defects, mutant pharates of both genes show loss and abnormal differentiation of adult eclosion muscles. The two genes have opposite effects on the destruction of larval muscles in metamorphosis. While Chro mutants show incomplete histolysis, muscles degenerate prematurely in east mutants. Moreover east mutants affect the remodeling of abdominal larval muscles into adult eclosion muscles. During this process, loss of east interferes with the spatial coordination of thinning of the larval muscles. Overexpression of EAST-GFP can prevent the disintegration of polytene chromosomes during programmed cell death. We propose that Chro activates and east inhibits processes and genes involved in tissue destruction and remodeling.


Assuntos
Proteínas de Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/genética , Genes de Insetos , Desenvolvimento Muscular/genética , Proteínas Associadas à Matriz Nuclear/genética , Fosfoproteínas/genética , Animais , Animais Geneticamente Modificados , Apoptose/genética , Proteínas de Ciclo Celular , Drosophila/citologia , Regulação da Expressão Gênica no Desenvolvimento , Larva/crescimento & desenvolvimento , Metamorfose Biológica , Modelos Biológicos , Mutação , Glândulas Salivares/crescimento & desenvolvimento , Técnicas do Sistema de Duplo-Híbrido
18.
PLoS One ; 2(5): e412, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17476334

RESUMO

The EAST protein of Drosophila is a component of an expandable extrachromosomal domain of the nucleus. To better understand its function, we studied the dynamics and localization of GFP-tagged EAST. In live larval salivary glands, EAST-GFP is highly mobile and localizes to the extrachromosomal nucleoplasm. When these cells are permeabilized, EAST-GFP rapidly associated with polytene chromosomes. The affinity to chromatin increases and mobility decreases with decreasing salt concentration. Deleting the C-terminal residues 1535 to 2301 of EAST strongly reduces the affinity to polytene chromosomes. The bulk of EAST-GFP co-localizes with heterochromatin and is absent from transcriptionally active chromosomal regions. The predominantly chromosomal localization of EAST-GFP can be detected in non-detergent treated salivary glands of pupae as they undergo apoptosis, however not in earlier stages of development. Consistent with this chromosomal pattern of localization, genetic evidence indicates a role for EAST in the repression of gene expression, since a lethal east mutation is allelic to the viable mutation suppressor of white-spotted. We propose that EAST acts as an ion sensor that modulates gene expression in response to changing intracellular ion concentrations.


Assuntos
Cromossomos , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica/fisiologia , Fosfoproteínas/fisiologia , Animais , Apoptose , Proteínas de Ciclo Celular , Drosophila , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/genética , Fosfoproteínas/genética
19.
Dev Cell ; 12(4): 479-81, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17419987

RESUMO

How the actin cytoskeleton is harnessed to fulfill its diverse cellular functions is a recurrent and intriguing question. In this issue of Developmental Cell, Kim et al. and Massarwa et al. describe a new role for F-actin, and more specifically the actin regulator WASp, in myoblast fusion in Drosophila.


Assuntos
Actinas/metabolismo , Drosophila melanogaster/metabolismo , Desenvolvimento Muscular , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Embrião não Mamífero , Modelos Biológicos , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
20.
Genes Dev ; 20(24): 3453-63, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17182870

RESUMO

The choice of self-renewal versus differentiation is a fundamental issue in stem cell and cancer biology. Neural progenitors of the Drosophila post-embryonic brain, larval neuroblasts (NBs), divide asymmetrically in a stem cell-like fashion to generate a self-renewing NB and a Ganglion Mother Cell (GMC), which divides terminally to produce two differentiating neuronal/glial daughters. Here we show that Aurora-A (AurA) acts as a tumor suppressor by suppressing NB self-renewal and promoting neuronal differentiation. In aurA loss-of-function mutants, supernumerary NBs are produced at the expense of neurons. AurA suppresses tumor formation by asymmetrically localizing atypical protein kinase C (aPKC), an NB proliferation factor. Numb, which also acts as a tumor suppressor in larval brains, is a major downstream target of AurA and aPKC. Notch activity is up-regulated in aurA and numb larval brains, and Notch signaling is necessary and sufficient to promote NB self-renewal and suppress differentiation in larval brains. Our data suggest that AurA, aPKC, Numb, and Notch function in a pathway that involved a series of negative genetic interactions. We have identified a novel mechanism for controlling the balance between self-renewal and neuronal differentiation during the asymmetric division of Drosophila larval NBs.


Assuntos
Drosophila/citologia , Neurônios/citologia , Proteínas Serina-Treonina Quinases/fisiologia , Células-Tronco/citologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Aurora Quinases , Encéfalo/citologia , Diferenciação Celular , Centrossomo/química , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Proteínas de Drosophila/análise , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Hormônios Juvenis/análise , Hormônios Juvenis/química , Larva/anatomia & histologia , Larva/fisiologia , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/análise , Receptores Notch/fisiologia , Fuso Acromático/fisiologia , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...