Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1147, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326304

RESUMO

If and how proteasomes catalyze not only peptide hydrolysis but also peptide splicing is an open question that has divided the scientific community. The debate has so far been based on immunopeptidomics, in vitro digestions of synthetic polypeptides as well as ex vivo and in vivo experiments, which could only indirectly describe proteasome-catalyzed peptide splicing of full-length proteins. Here we develop a workflow-and cognate software - to analyze proteasome-generated non-spliced and spliced peptides produced from entire proteins and apply it to in vitro digestions of 15 proteins, including well-known intrinsically disordered proteins such as human tau and α-Synuclein. The results confirm that 20S proteasomes produce a sizeable variety of cis-spliced peptides, whereas trans-spliced peptides are a minority. Both peptide hydrolysis and splicing produce peptides with well-defined characteristics, which hint toward an intricate regulation of both catalytic activities. At protein level, both non-spliced and spliced peptides are not randomly localized within protein sequences, but rather concentrated in hotspots of peptide products, in part driven by protein sequence motifs and proteasomal preferences. At sequence level, the different peptide sequence preference of peptide hydrolysis and peptide splicing suggests a competition between the two catalytic activities of 20S proteasomes during protein degradation.


Assuntos
Peptídeos , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Hidrólise , Peptídeos/metabolismo , Proteínas/metabolismo
2.
Plant Cell Physiol ; 60(9): 2000-2014, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31386149

RESUMO

Plants generally possess a strong ability to regenerate organs; for example, in tissue culture, shoots can regenerate from callus, a clump of actively proliferating, undifferentiated cells. Processing of pre-mRNA and ribosomal RNAs is important for callus formation and shoot regeneration. However, our knowledge of the roles of RNA quality control via the nonsense-mediated mRNA decay (NMD) pathway in shoot regeneration is limited. Here, we examined the shoot regeneration phenotypes of the low-beta-amylase1 (lba1)/upstream frame shift1-1 (upf1-1) and upf3-1 mutants, in which the core NMD components UPF1 and UPF3 are defective. These mutants formed callus from hypocotyl explants normally, but this callus behaved abnormally during shoot regeneration: the mutant callus generated numerous adventitious root structures instead of adventitious shoots in an auxin-dependent manner. Quantitative RT-PCR and microarray analyses showed that the upf mutations had widespread effects during culture on shoot-induction medium. In particular, the expression patterns of early auxin response genes, including those encoding AUXIN/INDOLE ACETIC ACID (AUX/IAA) family members, were significantly affected in the upf mutants. Also, the upregulation of shoot apical meristem-related transcription factor genes, such as CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, was inhibited in the mutants. Taken together, these results indicate that NMD-mediated transcriptomic regulation modulates the auxin response in plants and thus plays crucial roles in the early stages of shoot regeneration.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Degradação do RNAm Mediada por Códon sem Sentido , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Hipocótilo/genética , Hipocótilo/fisiologia , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/fisiologia , Mutação , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Transdução de Sinais
3.
Int J Biol Macromol ; 119: 438-445, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30048726

RESUMO

Polyhydroxyalkanoate (PHA) synthase, PhaC, is a key enzyme in the biosynthesis of PHA, a type of bioplastics with huge potential to replace petroleum-based plastics. While two structures have been determined, the exact mechanism remains unclear partly due to the absence of a tunnel for product passage. A model of the class I PhaC from Aquitalea sp. USM4, characterised with Km of 394 µM and kcat of 476 s-1 on 3-(R)-hydroxybutyryl-CoA, revealed a three-branched channel at the dimeric interface. Two of them are opened to the solvent and are expected to serve as the putative routes for substrate entrance and product exit, while the third is elongated in the class II PhaC1 model from Pseudomonas aeruginosa, indicating a role in accommodating the hydroxyalkanoate (HA) moiety of a HA-CoA substrate. Docking of the two tetrahedral intermediates, formed during the transfer of the growing PHA chain from the catalytic Cys to a new molecule of substrate and back to Cys, suggests a common elongation mechanism requiring the HA moiety of the ligand to rotate ~180°. Substrate specificity is determined in part by a bulky Phe/Tyr/Trp residue in the third branch in class I, which is conserved as Ala in class II to create room for longer substrates.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Betaproteobacteria/enzimologia , Modelos Moleculares , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/metabolismo , Polimerização , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA