Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 3(8): 10243-10249, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459153

RESUMO

Our work reports the hydrothermal synthesis of a bimetallic composite CoMoS, followed by the addition of cellulose fibers and its subsequent carbonization under Ar atmosphere (CoMoS@C). For comparison, CoMoS was heat-treated under the same conditions and referred as bare-CoMoS. X-ray diffraction analysis indicates that CoMoS@C composite matches with the CoMoS4 phase with additional peaks corresponding to MoO3 and CoMoO4 phases, which probably arise from air exposure during the carbonization process. Scanning electron microscopy images of CoMoS@C exhibit how the CoMoS material is anchored to the surface of carbonized cellulose fibers. As anode material, CoMoS@C shows a superior performance than bare-CoMoS. The CoMoS@C composite presents an initial high discharge capacity of ∼1164 mA h/g and retains a high specific discharge capacity of ∼715 mA h/g after 200 cycles at a current density of 500 mA/g compared to that of bare-CoMoS of 102 mA h/g. The high specific capacity and good cycling stability could be attributed to the synergistic effects of CoMoS and carbonized cellulose fibers. The use of biomass in the anode material represents a very easy and cost-effective way to improve the electrochemical Li-ion battery performance.

2.
Materials (Basel) ; 6(1): 198-205, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28809302

RESUMO

The chemical synthesis of gold nanoparticles (NP) by using gold (III) chloride trihydrate (HAuCl∙3H2O) and sodium citrate as a reducing agent in aqueous conditions at 100 °C is presented here. Gold nanoparticles areformed by a galvanic replacement mechanism as described by Lee and Messiel. Morphology of gold-NP was analyzed by way of high-resolution transmission electron microscopy; results indicate a six-fold icosahedral symmetry with an average size distribution of 22 nm. In order to understand the mechanical behaviors, like hardness and elastic moduli, gold-NP were subjected to nanoindentation measurements-obtaining a hardness value of 1.72 GPa and elastic modulus of 100 GPa in a 3-5 nm of displacement at the nanoparticle's surface.

3.
Ultramicroscopy ; 127: 64-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22925737

RESUMO

Hydrotreatment catalytic operations are commonly performed industrially by layered molybdenum sulfide promoted by cobalt or nickel in order to remove heteroelements (S, N, O) from fossil fuels and biofuels. Indeed, these heteroelements are responsible of the emission of pollutants when these fuels are used in vehicles. In this respect, previous studies made by our research group have shown that the active phase under steady state conditions is partially carbided while strong bending effects of MoS2 slabs were also observed. However, up to now, the morphology of the resulting Co/MoSxCy carbided catalyst has not been fully characterized. In the present study, for the first time, a chemical reaction between the carbon content of a TEM Cu/C grid and a freshly sulfide Co/MoS2 catalyst was in situ observed at 300 °C and 450 °C by HRTEM experimental techniques at ~10 nm of resolution. Results indicate that bending of MoS2 layers occurred due to carbon addition on MoS2 edge sites, as observed in stabilized catalysts after HDS reaction. Using a silicon grid, only cracks of MoS2 slabs were observed without bending effect confirming the role of structural-carbon in this change of morphology.

4.
J Phys Condens Matter ; 21(32): 325401, 2009 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21693965

RESUMO

We have used laboratory and synchrotron x-ray diffraction to investigate the structural and chemical changes undergone by polycrystalline RbH(2)PO(4) upon heating within the 30-250 °C temperature interval. Our data show no evidence of the previously reported onset of partial polymerization at T = 96 °C (Park et al 2001 J. Phys.: Condens. Matter 13 9411) which was proposed as an explanation for the high-temperature proton conductivity enhancement in phosphate-based solid acids. Instead, we found that a tetragonal [Formula: see text] monoclinic polymorphic transition initiates at T≈90 °C. The transition is complete at T≈130 °C, and the new monoclinic RbH(2)PO(4) polymorph is stable upon further heating to T = 200 °C. Moreover, its crystal structure is isomorphic to that of monoclinic CsH(2)PO(4). This remarkable similarity suggests that the microscopic structures and dynamics responsible for the high-temperature superprotonic behavior of RbH(2)PO(4) could be the same as those of its Cs-based counterpart.

5.
J Chem Phys ; 127(19): 194701, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18035892

RESUMO

To clarify the microscopic origin of the temperature-induced three-order-of-magnitude jump in the proton conductivity of CsH(2)PO(4) (superprotonic behavior), we have investigated its crystal structure modifications within the 25-300 degrees C temperature range under both ambient- and high-pressure conditions using synchrotron x-ray diffraction. Our high-pressure data show no indication of the thermal decomposition/polymerization at the crystal surface recently proposed as the origin of the enhanced proton conductivity [Phys. Rev. B 69, 054104 (2004)]. Instead, we found direct evidence that the superprotonic behavior of the title material is associated with a polymorphic structural transition to a high-temperature cubic phase. Our results are in excellent agreement with previous high-pressure ac impedance measurements.

6.
J Inorg Biochem ; 101(11-12): 1958-73, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17761292

RESUMO

Maya Blue is an ancient blue pigment composed of palygorskite clay and indigo. It was used by the ancient Maya and provides a dramatic background for some of the most impressive murals throughout Mesoamerica. Despite exposure to acids, alkalis, and chemical solvents, the color of the Maya Blue pigment remains unaltered. The chemical interaction between palygorskite and indigo form an organic/inorganic complex with the carbonyl oxygen of the indigo bound to a surface Al(3+) in the Si-O lattice. In addition indigo will undergo an oxidation to dehydroindigo during preparation. The dehydro-indigo molecule forms a similar but stronger complex with the Al(3+). Thus, Maya Blue varies in color due to the mixed indigo/dehydroindigo complex. The above conclusions are the result of application of multiple techniques (X-ray diffraction, differential thermal analysis/thermal gravimetric analysis, high resolution transmission electron microscopy, scanning electron microscopy, infrared and Raman spectroscopy) to the characterization of the organic/inorganic complex. A picture of the bonding of the organic molecule to the palygorskite surface forming a surface complex is developed and supported by the results of density functional theory calculations. We also report that other organic molecules such as thioindigo form similar organic/inorganic complexes thus, opening an entirely new class of complex materials for future applications.


Assuntos
Corantes/química , Indóis/química , Índigo Carmim/análogos & derivados , Índigo Carmim/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
7.
J Synchrotron Radiat ; 12(Pt 2): 129-34, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15728965

RESUMO

Development of synchrotron techniques for the determination of the structure of disordered, amorphous and surface materials has exploded over the past 20 years owing to the increasing availability of high-flux synchrotron radiation and the continuing development of increasingly powerful synchrotron techniques. These techniques are available to materials scientists who are not necessarily synchrotron scientists through interaction with effective user communities that exist at synchrotrons such as the Stanford Synchrotron Radiation Laboratory. In this article the application of multiple synchrotron characterization techniques to two classes of materials defined as 'surface compounds' is reviewed. One class of surface compounds are materials like MoS(2-x)C(x) that are widely used petroleum catalysts, used to improve the environmental properties of transportation fuels. These compounds may be viewed as 'sulfide-supported carbides' in their catalytically active states. The second class of 'surface compounds' are the 'Maya blue' pigments that are based on technology created by the ancient Maya. These compounds are organic/inorganic 'surface complexes' consisting of the dye indigo and palygorskite, common clay. The identification of both surface compounds relies on the application of synchrotron techniques as described here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA