Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 191(4): 1007-1012, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36595661

RESUMO

The purpose of this article is to determine the cause of Leber congenital amaurosis (LCA) in Chuuk state, Federated States of Micronesia (FSM). In this prospective observational case series, five patients with early-onset vision loss were examined in Chuuk state, FSM, during an ocular genetics visit to study the elevated incidence of microphthalmia. Because of their low vision these patients were incorrectly assumed to have microphthalmia. A complete ophthalmological exam established a clinical diagnosis of LCA. Candidate gene exons were sequenced with a targeted retinal dystrophy panel. Five subjects in three related families were diagnosed with LCA. All five were from Tonoas Island, within the Chuuk Lagoon, with ages ranging from 6 months to 16 years. DNA sequencing of affected individuals revealed a homozygous CRB1 NM_201253.3:c.3134del pathogenic variant, which was heterozygous in their parents. CRB1 genotypes were confirmed by a PCR restriction assay. We report identification of a founder pathogenic variant in CRB1 responsible for autosomal recessive LCA in this isolated community. This discovery will lead to appropriate recurrence risk counseling.


Assuntos
Amaurose Congênita de Leber , Microftalmia , Humanos , Amaurose Congênita de Leber/genética , Mutação , Genótipo , Olho , Linhagem , Proteínas do Olho/genética , Análise Mutacional de DNA , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
2.
Mol Vis ; 28: 203-219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284670

RESUMO

Purpose: The widespread consensus is that genotyping is essential for patients with inherited retinal disease (IRD). Given the numerous ongoing gene therapy clinical trials for IRDs, identifying the pathogenic mutation in these patients has potential important therapeutic implications. In this study, we demonstrate how we identified with a high degree of confidence numerous novel disease-causing mutations, deletions, and duplications in a large consecutive IRD case series by using a judicious combination of careful, in-depth clinical-functional phenotyping to guide and integrate our genotyping approach. Methods: We conducted a retrospective analysis of data between November 2016 and March 2018 from the Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases IRD patient database, which encompassed 378 IRD cases that had not yet been previously genotyped. With the exception of some patients who presented with classical clinical-functional phenotypes that allowed for targeted gene testing, all other subjects systematically underwent next-generation sequencing-based broad, IRD-focused panel testing. Most cases were also tested for parental allele phase. Results were reviewed vis-à-vis the clinical-functional phenotypes for reconciliation and potential addition of supplemental testing such as deletion/duplication microarrays or copy number variant (CNV) analysis. Supplemental testing was driven by an IRD specialist-laboratory consensus, and decisions were clinically or genetically driven or both. Results: By judiciously using this two-way approach and leveraging to its full potential the benefits of careful, in-depth clinical-functional phenotyping by an experienced IRD specialist, more than 80% of the cases in this series were successfully genotyped. We also identified with a high degree of confidence 52 novel disease-causing mutations, deletions, and duplications. Conclusions: The combination of meticulous, expert clinical-functional phenotyping studies with systematic next-generation sequencing panel-based genotyping and microarray deletion/duplication testing or CNV analysis as applicable in accordance with the above-mentioned consensus was extremely effective at the diagnostic end, reduced costs, and saved time. IRD specialist-laboratory two-way interactions and case discussions would augment the efficacy of this approach and improve the diagnostic yield in successfully solving and genotyping IRD cases.


Assuntos
Degeneração Retiniana , Doenças Retinianas , Humanos , Genótipo , Estudos Retrospectivos , Variações do Número de Cópias de DNA , Doenças Retinianas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação
3.
5.
Invest Ophthalmol Vis Sci ; 59(11): 4434-4440, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30193314

RESUMO

Purpose: Mutations in the ORF15 region of RPGR account for approximately half of all X-linked retinitis pigmentosa cases. However, a robust high-throughput method for the detection of ORF15 mutations has yet to be validated. We set out to develop the first clinically validated next-generation sequencing (NGS) method for the detection of mutations in this difficult-to-sequence region, including test accuracy and coverage data. Methods: As part of a blind-test, 145 research samples, previously tested by Sanger sequencing, and 81 clinical samples were evaluated using NGS of long-range PCR products fragmented with Illumina's Nextera library preparation kit (method 1), or with Centrillion's OneTube technology, supplemented with duplication analysis using an ORF15-specific in-silico array (method 2). DNA fragments were analyzed using Agilent's DNA 1000 assay, and sequencing was done on Illumina's MiSeq 2×150 or HiSeq2500 2×100. NextGENe by SoftGenetics was used for data analysis and variant calling. Results: The Nextera library preparation method produced 24 cases of discordance due to (in order of decreasing occurrence) false-negatives, incorrectly called variants, and a false-positive. Subsequent use of a new, OneTube NGS library preparation method, supplemented with duplication analyses, resolved discordance between Sanger and NGS data in all cases. This improvement in variant detection accuracy was largely attributed to improvement in random fragmentation offered by the enzymatic OneTube method, resulting in more complete coverage of the highly repetitive ORF15 region. Minimum coverage was roughly 320 reads for Nextera and 6800 reads for OneTube (normalized for total read counts). Conclusions: This paper documents the first clinically validated NGS method for reliable, high-throughput sequencing of RPGR ORF15. Sensitivity and specificity of the new method were 100%, with the caveat of unclear zygosity calling for one large duplication case. These findings demonstrate a reliable and practical implementation for NGS-based diagnosis of RPGR ORF15 mutations. They also provide the foundation for targeted, high-coverage sequencing of any other repetitive regions within the genome.


Assuntos
Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Fases de Leitura Aberta/genética , Retinose Pigmentar/diagnóstico , Adulto , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Masculino , Linhagem , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Retinose Pigmentar/genética , Sensibilidade e Especificidade
6.
Retin Cases Brief Rep ; 12 Suppl 1: S67-S71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29045269

RESUMO

PURPOSE: To report a novel synonymous mutation in CHM and the associated phenotype in an affected man and carrier mother. METHODS: Case report. RESULTS: A 34-year-old man with a long history of progressive night blindness and visual field constriction was diagnosed with choroideremia based on ocular examination and multimodal retinal imaging. Extensive chorioretinal degeneration was noted on spectral domain optical coherence tomography and fundus autofluorescence imaging. Candidate CHM gene sequencing revealed a hemizygous c.1359C>T, p.(S453S) variant. This variant was heterozygous in the mother of the proband who exhibited the classic carrier phenotype of choroideremia on fundus autofluorescence imaging. CONCLUSION: A novel c.1359C>T, p.(S453S) variant in CHM is the first-identified synonymous mutation associated with disease manifestation in an affected man and carrier phenotype in a heterozygous mother.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Coroideremia/genética , Mutação , Adulto , Coroideremia/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cegueira Noturna/etiologia , Linhagem , Transtornos da Visão/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...