Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2400147, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704677

RESUMO

Crystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state. This effect, referred to herein as crystal interface liquefaction, is observed at remarkably low temperatures and results in highly unstable crystal interfaces at temperatures exceeding 200 K below the bulk melting point of the solid. In general, any liquefaction process would occur at or close to the formal melting point of a solid, thus differentiating the observed liquefaction phenomenon from other processes such as surface pre-melting or conventional bulk melting. Crystal interface liquefaction is observed in a variety of binary alloy systems and as such, the findings may impact the understanding of crystallization and solidification processes in metallic systems and alloys more generally.

2.
Adv Mater ; : e2403885, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739417

RESUMO

Low-melting liquid metals are emerging as a new group of highly functional solvents due to their capability to dissolve and alloy various metals in their elemental state to form solutions as well as colloidal systems. Furthermore, these liquid metals can facilitate and catalyze multiple unique chemical reactions. Despite the intriguing science behind liquid metals and alloys, very little is known about their fundamental structures in the nanometric regime. To bridge this gap, this work employs small angle neutron scattering and molecular dynamics simulations, revealing that the most commonly used liquid metal solvents, EGaIn and Galinstan, are surprisingly structured with the formation of clusters ranging from 157 to 15.7 Å. Conversely, noneutectic liquid metal alloys of GaSn or GaIn at low solute concentrations of 1, 2, and 5 wt%, as well as pure Ga, do not exhibit these structures. Importantly, the eutectic alloys retain their structure even at elevated temperatures of 60 and 90 °C, highlighting that they are not just simple homogeneous fluids consisting of individual atoms. Understanding the complex soft structure of liquid alloys will assist in comprehending complex phenomena occurring within these fluids and contribute to deriving reaction mechanisms in the realm of synthesis and liquid metal-based catalysis.

3.
J Environ Manage ; 301: 113791, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592670

RESUMO

The conversion of low-value plastic waste into high-value products such as carbon nanomaterial is of recent interest. In the current study, the non-condensable pyrolysis gases, produced from Polypropylene Copolymer (PPC) feedstock, was converted into bamboo-type carbon nanotubes (BCNTs) through catalytic chemical vapour deposition using biochar. Experiments were conducted in a three-zone furnace fixed bed reactor, where PPC was pyrolysed in the second zone and carbon nanotubes (CNTs) growth was eventuated in the third zone. The effects of different growth temperatures (500, 700, 900 °C) and biochar particle sizes (nanoparticle as well as 0-100 and 100-300 µm) were investigated to optimise the production of hydrogen and the yield of carbon nanotubes on the biochar surface. Biochar samples used in the synthesis of CNTs were obtained from the pyrolysis of saw dust at 700 °C in a muffle furnace. Analyses performed by using Scanning electron microscopy, Transmission electron microscopy, X-ray diffraction, and Raman spectroscopy techniques suggested that the best crystalline structure of CNTs were obtained at 900 °C with nano-sized biochar as a catalyst. The strong gas-solid contact and void fraction of nano-sized particles enhances the diffusion-precipitation mechanism, leading to the growth of CNTs. The nano-sized biochar increased hydrogen production at 900 °C and reduced the polycyclic aromatic hydrocarbons content in oil to only 1%, which is advantageous for further utilisation. Therefore, the production of high-value CNTs from waste plastic using low-cost biochar catalyst can be a sustainable approach in the management of waste plastic while participating in the circular economy.


Assuntos
Nanotubos de Carbono , Pirólise , Carvão Vegetal , Gases , Polímeros , Polipropilenos
4.
J Hazard Mater ; 389: 121827, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-31837938

RESUMO

In this work we report the production of Bi2WO6 loaded N-biochar composites (BW/N-B) for the removal of rhodamine-B and the reduction of Cr(VI) in water. Biochar was treated with urea to produce a N-modified biochar (N-Biochar), with great conductivity and special 2D sheet platform structure. Materials with different ratios of biochar and urea were produced. These materials were used as platform for supporting Bi2WO6. The characteristics of the as-prepared composites were investigated in detail by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectra (FT-IR), UV-vis diffuse reflectance spectra (UV-DRS), Photoluminescence spectra (PL), Electrochemical Impedance Spectroscopy (EIS) and Mott-Schottky curves. After loading N-Biochar, the band gaps of the as-prepared composites were narrower than those of Bi2WO6, which could improve separation and migration of photogenerated electron-hole pairs of BW/B-N under visible-light excitation, enhancing photocatalytic activity. BW/N1-B (ratio of urea to biochar 2:1 and 1 g/L) exhibited excellent photocatalytic activity for the degradation of 10 mg/L Rhodamine B (RhB) (99.1 %, 45 min) and reduction of Cr(VI) (96.7 %, 30 min) under visible-light irradiation. The results will provide a novel theoretical foundation on the application of biochar for photocatalysis and environmental remediation.

5.
Nat Mater ; 15(7): 782-791, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27088236

RESUMO

Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required.


Assuntos
Implantes Absorvíveis , Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Eletrodos Implantados , Silício , Animais , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Ratos , Silício/química , Silício/farmacologia
6.
Dalton Trans ; 43(31): 12077-84, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24983775

RESUMO

Successful synthesis of stable MFe2O4 nanoparticles@C has been realized by applying the novel concept of using levulinic acid possessing carboxyl and carbonyl groups to facilitate the interaction with metal ions (M(2+) and Fe(3+)) and the carbon source (phloroglucinol) in the sol-gel polymerization method. All the samples have been characterized by XRD, SEM, FT-IR, TEM, HRTEM, ICP-AES, CHNS, and N2 adsorption-desorption, and were studied for their performance towards hydrogenation reaction of styrene. Out of three samples NiFe2O4 gave excellent selective hydrogenation activity of styrene to ethyl benzene (100% conversion and 100% selectivity). Optimal production of ethyl benzene over NiFe2O4 nanoparticles@C has been established at 80 °C reaction temperature after 24 h reaction time under 40 bar hydrogen pressure.

7.
Langmuir ; 26(3): 2099-106, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19810702

RESUMO

A nonaqueous photodeposition procedure for forming Au nanoparticles on semiconducting supports (TiO(2), CeO(2), and ZrO(2)) was investigated. Intrinsic excitation of the support was sufficient to induce Au(0) nucleation, without the need for an organic hole-scavenging species. Photoreduction rates were higher over TiO(2) and ZrO(2) than over CeO(2), likely due to a lower rate of photogenerated electron recombination. Illumination resulted in metallization of the adsorbed Au species and formation of crystalline Au nanoparticles dispersed across the oxide surfaces. On the basis of transmission electron microscopy (TEM) evidence of a strong Au particle-metal oxide interaction, it is proposed that Au deposit formation proceeds via the nucleation of highly dispersed clusters which can diffuse and amalgamate at room temperature to form larger surface-defect-immobilized clusters, with the final particle size being significantly smaller than that achieved by conventional aqueous photodeposition. From this work, it is possible to draw several new fundamental insights, with regards to both the nonaqueous photodeposition process and the general mechanism by which dispersed metallic Au nanoparticles are formed from ionic precursors adsorbed upon metal oxide supports.


Assuntos
Cério/química , Ouro/química , Processos Fotoquímicos , Titânio/química , Zircônio/química , Adsorção , Catálise , Nanoestruturas/química , Análise Espectral , Eletricidade Estática , Volatilização
8.
Exp Hematol ; 36(9): 1132-42, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18550261

RESUMO

OBJECTIVE: Inherited or acquired mutations in the heme biosynthetic pathway leads to a debilitating class of diseases collectively known as porphyrias, with symptoms that can include anemia, cutaneous photosensitivity, and neurovisceral dysfunction. In a genetic screen for hematopoietic mutants, we isolated a zebrafish mutant, montalcino (mno), which displays hypochromic anemia and porphyria. The objective of this study was to identify the defective gene and characterize the phenotype of the zebrafish mutant. MATERIALS AND METHODS: Genetic linkage analysis was utilized to identify the region harboring the mno mutation. Candidate gene analysis together with reverse transcriptase polymerase chain reaction was utilized to identify the genetic mutation, which was confirmed via allele-specific oligo hybridizations. Whole mount in situ hybridizations and o-dianisidine staining were used to characterize the phenotype of the mno mutant. mRNA and morpholino microinjections were performed to phenocopy and/or rescue the mutant phenotype. RESULTS: Homozygous mno mutant embryos have a defect in the protoporphyrinogen oxidase (ppox) gene, which encodes the enzyme that catalyzes the oxidation of protoporphyrinogen. Homozygous mutant embryos are deficient in hemoglobin, and by 36 hours post-fertilization are visibly anemic and porphyric. The hypochromic anemia of mno embryos was partially rescued by human ppox, providing evidence for the conservation of function between human and zebrafish ppox. CONCLUSION: In humans, mutations in ppox result in variegate porphyria. At present, effective treatment for acute attacks requires the administration intravenous hemin and/or glucose. Thus, mno represents a powerful model for investigation, and a tool for future screens aimed at identifying chemical modifiers of variegate porphyria.


Assuntos
Anemia Hipocrômica/genética , Modelos Animais de Doenças , Porfiria Variegada/genética , Protoporfirinogênio Oxidase/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Códon sem Sentido , Sequência Conservada , DNA Complementar/genética , Embrião não Mamífero/patologia , Hemoglobinas/biossíntese , Hemoglobinas/deficiência , Homozigoto , Humanos , Camundongos , Dados de Sequência Molecular , Fenótipo , Porfiria Variegada/sangue , Porfiria Variegada/embriologia , Proteínas Recombinantes de Fusão/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência
9.
Chemosphere ; 72(2): 263-71, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18336863

RESUMO

The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV(254) absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV(254) absorbance. The THMFPs of samples were decreased to below 20 microg l(-1) after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.


Assuntos
Fracionamento Químico/métodos , Substâncias Húmicas , Titânio/química , Catálise/efeitos da radiação , Cromatografia em Gel , Peso Molecular , Espectrofotometria Ultravioleta , Raios Ultravioleta
10.
Photochem Photobiol Sci ; 6(8): 829-32, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17668110

RESUMO

By identifying the Electron Partitioning Effect (EPE) as responsible for the large gold deposits usually formed in the conventional photodeposition method, a low energy UV light-based method for the preparation of comparatively high-activity gold-titania catalysts was developed. These materials were tested in the carbon monoxide (CO) oxidation reaction and returned markedly higher levels of activity at room temperature, when compared to catalysts prepared by the traditional photodeposition method. This is the first instance of using a light-mediated process for preparing catalysts active for the CO oxidation reaction.

11.
Mol Cell Biol ; 27(16): 5887-97, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17576815

RESUMO

A critical step in cell division is formation of the mitotic spindle, which is a bipolar array of microtubules that mediates chromosome separation. Here, we report that the SCL-interrupting locus (SIL), a vertebrate-specific cytosolic protein, is necessary for proper mitotic spindle organization in zebrafish and human cells. A homozygous lethal zebrafish mutant, cassiopeia (csp), was identified by a genetic screen for mitotic mutant. csp mutant embryos have an increased mitotic index, have highly disorganized mitotic spindles, and often lack one or both centrosomes. These phenotypes are caused by a loss-of-function mutation in zebrafish sil. To determine if the requirement for SIL in mitotic spindle organization is conserved in mammals, we generated an antibody against human SIL, which revealed that SIL localizes to the poles of the mitotic spindle during metaphase. Furthermore, short hairpin RNA knockdown of SIL in human cells recapitulates the zebrafish csp mitotic spindle defects. These data, taken together, identify SIL as a novel, vertebrate-specific regulator of mitotic spindle assembly.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação/genética , Fuso Acromático/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Padronização Corporal , Complexo Dinactina , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Fenótipo , Transporte Proteico , RNA Interferente Pequeno/metabolismo
12.
Genes Dev ; 21(1): 55-9, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17210788

RESUMO

Proper chromosome segregation is essential for maintenance of genomic integrity and instability resulting from failure of this process may contribute to cancer. Here, we demonstrate that a mutation in the mitotic regulator separase is responsible for the cell cycle defects seen in the zebrafish mutant, cease&desist (cds). Analysis of cds homozygous mutant embryos reveals high levels of polyploidy and aneuploidy, spindle defects, and a mitotic exit delay. Carcinogenesis studies demonstrated that cds heterozygous adults have a shift in tumor spectrum with an eightfold increase in the percentage of fish bearing epithelial tumors, indicating that separase is a tumor suppressor gene in vertebrates. These data strongly support a conserved cross-species role for mitotic checkpoint genes in genetic stability and epithelial carcinogenesis.


Assuntos
Proteínas de Ciclo Celular/genética , Suscetibilidade a Doenças , Endopeptidases/genética , Instabilidade Genômica , Mitose , Mutação , Neoplasias Epiteliais e Glandulares/etiologia , Animais , Bromodesoxiuridina , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/patologia , Ciclo Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Heterozigoto , Homozigoto , Neoplasias Intestinais/etiologia , Neoplasias Intestinais/patologia , Neoplasias Epiteliais e Glandulares/patologia , Ploidias , Separase , Fuso Acromático/genética , Fuso Acromático/patologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
13.
Photochem Photobiol Sci ; 4(8): 565-7, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16052260

RESUMO

The superiority of silver deposited titania particles over bare titania particles for the photocatalytic oxidation of selected organic compounds is explained: the presence of silver mainly enhances the photocatalytic oxidation of organic compounds that are predominantly oxidised by holes, while it has only an insignificant effect on those organic compounds that require hydroxyl radicals for their mineralisation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...