Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123151

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Canais Iônicos/química , Receptores Citoplasmáticos e Nucleares
3.
Am J Hematol ; 98(7): 1000-1016, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37139907

RESUMO

Specialized pro-resolving lipid mediators play key functions in the resolution of the acute inflammatory response. Herein, we elucidate the stereochemical structure of the new 4S,5R-RCTR1, a cysteinyl-resolvin, recently uncovered in human leukocytes incubated with a 4S,5S-epoxy-resolvin intermediate, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and ultra-violet (UV) spectrophotometry. With this approach, the physical properties of the new mediator prepared by total organic synthesis were matched to enzymatically produced biogenic material. In addition, we confirmed the potent biological actions of 4S,5R-RCTR1 with human M2-like macrophage phagocytosis of live bacteria, efferocytosis of apoptotic neutrophils, and erythrophagocytosis of senescent human red blood cells in a concentration-dependent manner from 0.1 to 10 nM. Taken together, these results establish the complete stereochemistry of 4S,5R-RCTR1 as 5R-glutathionyl-4S,17S-dihydroxy-6E,8E,10Z,13Z,15E,19Z-docosahexaenoic acid and give evidence of its novel bioactivities in human phagocyte responses. Moreover, they confirm and extend the stereoselective functions of the 4S,5R-RCTR1 with isolated human phagocytes of interest in the resolution of inflammation.


Assuntos
Linfo-Histiocitose Hemofagocítica , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Fagocitose , Inflamação , Macrófagos
4.
Prostaglandins Other Lipid Mediat ; 166: 106718, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36813255

RESUMO

This review is a synopsis of the main points from the opening presentation by the authors in the Resolution of Inflammation session at the 8th European Workshop on Lipid Mediators held at the Karolinska Institute, Stockholm, Sweden, June 29th, 2022. Specialized pro-resolving mediators (SPM) promote tissue regeneration, control infections and resolution of inflammation. These include resolvins, protectins, maresins and the newly identified conjugates in tissue regeneration (CTRs). We reported mechanisms of CTRs in activating primordial regeneration pathways in planaria using RNA-sequencing. Also, the 4S,5S-epoxy-resolvin intermediate in the biosynthesis of resolvin D3 and resolvin D4 was prepared by total organic synthesis. Human neutrophils convert this to resolvin D3 and resolvin D4, while human M2 macrophages transformed this labile epoxide intermediate to resolvin D4 and a novel cysteinyl-resolvin that is a potent isomer of RCTR1. The novel cysteinyl-resolvin significantly accelerates tissue regeneration with planaria and inhibits human granuloma formation.


Assuntos
Inflamação , Macrófagos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Neutrófilos/metabolismo , Mediadores da Inflamação/metabolismo
6.
Prog Lipid Res ; 86: 101165, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508275

RESUMO

Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos , Eicosanoides , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Oxilipinas/metabolismo
7.
Blood ; 139(8): 1222-1233, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34814186

RESUMO

The newly identified 13-series (T-series) resolvins (RvTs) regulate phagocyte functions and accelerate resolution of infectious inflammation. Because severe acute respiratory syndrome coronavirus 2 elicits uncontrolled inflammation involving neutrophil extracellular traps (NETs), we tested whether stereochemically defined RvTs regulate NET formation. Using microfluidic devices capturing NETs in phorbol 12-myristate 13-acetate-stimulated human whole blood, the RvTs (RvT1-RvT4; 2.5 nM each) potently reduced NETs. With interleukin-1ß-stimulated human neutrophils, each RvT dose and time dependently decreased NETosis, conveying ∼50% potencies at 10 nM, compared with a known NETosis inhibitor (10 µM). In a murine Staphylococcus aureus infection, RvTs (50 ng each) limited neutrophil infiltration, bacterial titers, and NETs. In addition, each RvT enhanced NET uptake by human macrophages; RvT2 was the most potent of the four RvTs, giving a >50% increase in NET-phagocytosis. As part of the intracellular signaling mechanism, RvT2 increased cyclic adenosine monophosphate and phospho-AMP-activated protein kinase (AMPK) within human macrophages, and RvT2-stimulated NET uptake was abolished by protein kinase A and AMPK inhibition. RvT2 also stimulated NET clearance by mouse macrophages in vivo. Together, these results provide evidence for novel pro-resolving functions of RvTs, namely reducing NETosis and enhancing macrophage NET clearance via a cyclic adenosine monophosphate-protein kinase A-AMPK axis. Thus, RvTs open opportunities for regulating NET-mediated collateral tissue damage during infection as well as monitoring NETs.


Assuntos
Armadilhas Extracelulares/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , COVID-19/imunologia , Humanos , Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Neutrófilos/imunologia , Fagocitose , SARS-CoV-2/imunologia
8.
Br J Pharmacol ; 178 Suppl 1: S27-S156, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529832

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos , Ligantes , Receptores Citoplasmáticos e Nucleares , Receptores Acoplados a Proteínas G
9.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649212

RESUMO

The recently elucidated proresolving conjugates in tissue regeneration (CTR) maresin-CTR (MCTR), protectin-CTR (PCTR), and resolvin-CTR (RCTR), termed cysteinyl-specialized proresolving mediators (cys-SPMs) each promotes regeneration, controls infection, and accelerates resolution of inflammation. Here, we sought evidence for cys-SPM activation of primordial pathways in planaria (Dugesia japonica) regeneration that might link resolution of inflammation and regeneration. On surgical resection, planaria regeneration was enhanced with MCTR3, PCTR3, or RCTR3 (10 nM), each used for RNA sequencing. The three cys-SPMs shared up-regulation of 175 known transcripts with fold-change > 1.25 and combined false discovery rate (FDR) < 0.002, and 199 canonical pathways (FDR < 0.25), including NF-κB pathways and an ortholog of human TRAF3 (TNFR-associated factor 3). Three separate pathway analyses converged on TRAF3 up-regulation by cys-SPMs. With human macrophages, three cys-SPMs each dose-dependently increased TRAF3 expression in a cAMP-PKA-dependent manner. TRAF3 overexpression in macrophages enhanced Interleukin-10 (IL-10) and phagocytosis of Escherichia coli IL-10 also increased phagocytosis in a dose-dependent manner. Silencing of mouse TRAF3 in vivo significantly reduced IL-10 and macrophage phagocytosis. TRAF3 silencing in vivo also relieved cys-SPMs' actions in limiting polymorphonuclear neutrophil in E. coli exudates. These results identify cys-SPM-regulated pathways in planaria regeneration, uncovering a role for TRAF3/IL-10 in regulating mammalian phagocyte functions in resolution. Cys-SPM activation of TRAF3 signaling is a molecular component of both regeneration and resolution of infectious inflammation.


Assuntos
Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Planárias/imunologia , Regeneração/imunologia , Transdução de Sinais/imunologia , Fator 3 Associado a Receptor de TNF/imunologia , Animais , Infecções por Escherichia coli/genética , Humanos , Inflamação/genética , Inflamação/imunologia , Neutrófilos/imunologia , Fagocitose , Planárias/genética , Regeneração/genética , Transdução de Sinais/genética , Fator 3 Associado a Receptor de TNF/genética
10.
Essays Biochem ; 64(3): 443-462, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32885825

RESUMO

Today, persistent and uncontrolled inflammation is appreciated to play a pivotal role in many diseases, such as cardiovascular diseases, neurodegenerative diseases, metabolic syndrome and many other diseases of public health concern (e.g. Coronavirus Disease 2019 (COVID-19) and periodontal disease). The ideal response to initial challenge in humans is a self-limited inflammatory response leading to complete resolution. The resolution phase is now widely recognized as a biosynthetically active process, governed by a superfamily of endogenous chemical mediators that stimulate resolution of inflammatory responses, namely specialized proresolving mediators (SPMs). Because resolution is the natural ideal response, the SPMs have gained attention. SPMs are mediators that include ω-6 arachidonic acid-derived lipoxins, ω-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-derived resolvins, protectins and maresins, cysteinyl-SPMs, as well as n-3 docosapentaenoic acid (DPA)-derived SPMs. These novel immunoresolvents, their biosynthetic pathways and receptors have proven to promote resolution of inflammation, clearance of microbes, reduce pain and promote tissue regeneration via specific cellular and molecular mechanisms. As of 17 August, 2020, PubMed.gov reported >1170 publications for resolvins, confirming their potent protective actions from many laboratories worldwide. Since this field is rapidly expanding, we provide a short update of advances within 2-3 years from human and preclinical animal studies, together with the structural-functional elucidation of SPMs and identification of novel SPM receptors. These new discoveries indicate that SPMs, their pathways and receptors could provide a basis for new approaches for treating inflammation-associated diseases and for stimulating tissue regeneration via resolution pharmacology and precision nutrition.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Inflamação/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Animais , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/metabolismo , Ácidos Docosa-Hexaenoicos/imunologia , Ácidos Docosa-Hexaenoicos/metabolismo , Humanos , Inflamação/metabolismo , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/metabolismo , SARS-CoV-2
12.
J Clin Invest ; 129(12): 5294-5311, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31657786

RESUMO

Resolution of acute inflammation is an active process orchestrated by endogenous mediators and mechanisms pivotal in host defense and homeostasis. The macrophage mediator in resolving inflammation, maresin 1 (MaR1), is a potent immunoresolvent, stimulating resolution of acute inflammation and organ protection. Using an unbiased screening of greater than 200 GPCRs, we identified MaR1 as a stereoselective activator for human leucine-rich repeat containing G protein-coupled receptor 6 (LGR6), expressed in phagocytes. MaR1 specificity for recombinant human LGR6 activation was established using reporter cells expressing LGR6 and functional impedance sensing. MaR1-specific binding to LGR6 was confirmed using 3H-labeled MaR1. With human and mouse phagocytes, MaR1 (0.01-10 nM) enhanced phagocytosis, efferocytosis, and phosphorylation of a panel of proteins including the ERK and cAMP response element-binding protein. These MaR1 actions were significantly amplified with LGR6 overexpression and diminished by gene silencing in phagocytes. Thus, we provide evidence for MaR1 as an endogenous activator of human LGR6 and a novel role of LGR6 in stimulating MaR1's key proresolving functions of phagocytes.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Fagócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Fagocitose , Fosforilação , RNA Interferente Pequeno/metabolismo , Células THP-1
13.
Chemistry ; 25(6): 1476-1480, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30511787

RESUMO

New drugs that can resolve inflammation without immunosuppressive effects are at the medicinal chemistry frontier. Pro-resolving endogenously formed small molecules, that is, the resolvins, are excellent candidates displaying such bioactions. The first total synthesis of the specialized pro-resolving mediator RvD1n-3 DPA has been achieved using the underutilized sp3 -sp3 Negishi cross coupling reaction and an alkyne hydrosilylation-protodesilylation protocol. Biological evaluations revealed that this novel mediator displays low nanomolar pro-resolving properties and potently activates the human DRV1/GPR32 receptor. As such, this endogenous natural product is a lead compound for the development of novel immunoresolvents.


Assuntos
Anti-Inflamatórios/síntese química , Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Insaturados/química , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Inflamação/patologia , Inflamação/prevenção & controle , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Teoria Quântica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Estereoisomerismo
14.
Cell Chem Biol ; 26(2): 244-254.e4, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30554914

RESUMO

Resolution of acute inflammation is governed, in part, by specialized pro-resolving mediators, including lipoxins, resolvins, protectins, and maresins. Among them, resolvin D1 (RvD1) exhibits potent pro-resolving functions via activating human resolvin D1 receptor (DRV1/GPR32). RvD1 is a complex molecule that requires challenging organic synthesis, diminishing its potential as a therapeutic. Therefore, we implemented a high-throughput screening of small-molecule libraries and identified several chemotypes that activated recombinant DRV1, represented by NCGC00120943 (C1A), NCGC00135472 (C2A), pMPPF, and pMPPI. These chemotypes also elicited rapid impedance changes in cells overexpressing recombinant DRV1. With human macrophages, they each stimulated phagocytosis of serum-treated zymosan at concentrations comparable with that of RvD1, the endogenous DRV1 ligand. In addition, macrophage phagocytosis of live E. coli was significantly increased by these chemotypes in DRV1-transfected macrophages, compared with mock-transfected cells. Taken together, these chemotypes identified by unbiased screens act as RvD1 mimetics, exhibiting pro-resolving functions via interacting with human DRV1.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequenas/química , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Escherichia coli/fisiologia , Humanos , Ligantes , Macrófagos/citologia , Macrófagos/metabolismo , Simulação de Acoplamento Molecular , Fagocitose/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Bibliotecas de Moléculas Pequenas/farmacologia , Zimosan/farmacologia , beta-Arrestinas/metabolismo
15.
Proc Natl Acad Sci U S A ; 115(37): 9252-9257, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30139917

RESUMO

Epoxyeicosatrienoic acids (EETs) are lipid-derived signaling molecules with cardioprotective and vasodilatory actions. We recently showed that 11,12-EET enhances hematopoietic induction and engraftment in mice and zebrafish. EETs are known to signal via G protein-coupled receptors, with evidence supporting the existence of a specific high-affinity receptor. Identification of a hematopoietic-specific EET receptor would enable genetic interrogation of EET signaling pathways, and perhaps clinical use of this molecule. We developed a bioinformatic approach to identify an EET receptor based on the expression of G protein-coupled receptors in cell lines with differential responses to EETs. We found 10 candidate EET receptors that are expressed in three EET-responsive cell lines, but not expressed in an EET-unresponsive line. Of these, only recombinant GPR132 showed EET-responsiveness in vitro, using a luminescence-based ß-arrestin recruitment assay. Knockdown of zebrafish gpr132b prevented EET-induced hematopoiesis, and marrow from GPR132 knockout mice showed decreased long-term engraftment capability. In contrast to high-affinity EET receptors, GPR132 is reported to respond to additional hydroxy-fatty acids in vitro, and we found that these same hydroxy-fatty acids enhance hematopoiesis in the zebrafish. We conducted structure-activity relationship analyses using both cell culture and zebrafish assays on diverse medium-chain fatty acids. Certain oxygenated, unsaturated free fatty acids showed high activation of GPR132, whereas unoxygenated or saturated fatty acids had lower activity. Absence of the carbon-1 position carboxylic acid prevented activity, suggesting that this moiety is required for receptor activation. GPR132 responds to a select panel of oxygenated polyunsaturated fatty acids to enhance both embryonic and adult hematopoiesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Hematopoese/efeitos dos fármacos , Oxilipinas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Hematopoese/genética , Camundongos , Camundongos Knockout , Oxilipinas/química , Oxilipinas/farmacologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Relação Estrutura-Atividade , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
16.
J Invest Dermatol ; 138(9): 2051-2060, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29559341

RESUMO

Cutaneous injury causes underlying tissue damage that must be quickly repaired to minimize exposure to pathogens and to restore barrier function. While the role of growth factors in tissue repair is established, the role of lipid mediators in skin repair has not been investigated extensively. Using a mass spectrometry-based lipid mediator metabolomics approach, we identified D-series resolvins and related pro-resolving lipid mediators during skin injury in mice and pigs. Differentiation of human epidermal keratinocytes increased expression of 15-lipoxygenase and stereospecific production of 17S-hydroxydocosahexaenoic acid, the common upstream biosynthetic marker and precursor of D-series resolvins. In human and pig skin, specific receptors for D-series resolvins were expressed in the epidermal layer and mice deficient in RvD1 receptor Alx/Fpr2 showed an endogenous defect in re-epithelialization. Topical application of D-series resolvins expedited re-epithelialization during skin injury and they enhanced migration of human epidermal keratinocytes in a receptor-dependent manner. The enhancement of re-epithelialization by RvD2 was lost in mice genetically deficient in its receptor and migration of keratinocytes stimulated with RvD2 was associated with activation of the PI3K-AKT-mTOR-S6 pathway, blockade of which prevented its pro-migratory actions. Collectively, these results demonstrate that resolvins have direct roles in the tissue repair program.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Regeneração/fisiologia , Pele/metabolismo , Cicatrização/fisiologia , Ferimentos e Lesões/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pele/lesões , Pele/patologia , Suínos , Ferimentos e Lesões/patologia
17.
Am J Pathol ; 188(4): 950-966, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29571326

RESUMO

Resolvin conjugates in tissue regeneration (RCTRs) are new chemical signals that accelerate resolution of inflammation, infection, and tissue regeneration. Herein, using liquid chromatography-tandem mass spectrometry-based metabololipidomics, we identified RCTRs in human spleen, lymph node, bone marrow, and brain. In human spleen incubated with Staphylococcus aureus, endogenous RCTRs were increased along with conversion of deuterium-labeled docosahexaenoic acid, conferring pathway activation. Physical and biological properties of endogenous RCTRs were matched with those prepared by total organic synthesis. The complete stereochemical assignment of bioactive RCTR1 is 8R-glutathionyl-7S,17S-dihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, RCTR2 is 8R-cysteinylglycinyl-7S,17S-dihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, and RCTR3 is 8R-cysteinyl-7S,17S-dihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid. These stereochemically defined RCTRs stimulated human macrophage phagocytosis, efferocytosis, and planaria tissue generation. Proteome profiling demonstrated that RCTRs regulated both proinflammatory and anti-inflammatory cytokines with human macrophages. In microfluidic chambers, the three RCTRs limited human polymorphonuclear cell migration. In hind-limb ischemia-reperfusion-initiated organ injury, both RCTR2 and RCTR3 reduced polymorphonuclear cell infiltration into lungs. In infectious peritonitis, RCTR1 shortened the resolution intervals. Each RCTR (1 nmol/L) accelerated planaria tissue regeneration by approximately 0.5 days, with direct comparison to both maresin and protectin CTRs. Together, these results identify a new bioactive RCTR (ie, RCTR3) in human tissues and establish the complete stereochemistry and rank-order potencies of three RCTRs in vivo. Moreover, RCTR1, RCTR2, and RCTR3 each exert potent anti-inflammatory and proresolving actions with human leukocytes.


Assuntos
Ácidos Graxos Ômega-3/química , Fagócitos/metabolismo , Regeneração/fisiologia , Animais , Quimiotaxia , Infecções por Escherichia coli/patologia , Ácidos Graxos Ômega-3/biossíntese , Humanos , Inflamação/patologia , Lesão Pulmonar/microbiologia , Lesão Pulmonar/patologia , Macrófagos/citologia , Masculino , Metaboloma , Camundongos , Fagócitos/citologia , Fagocitose , Planárias/fisiologia , Proteoma/metabolismo , Traumatismo por Reperfusão/microbiologia , Traumatismo por Reperfusão/patologia , Baço/metabolismo , Estereoisomerismo
18.
FASEB J ; 32(7): 4043-4052, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29490167

RESUMO

Resolution of acute inflammation is governed, in part, by lipid mediator class switching from proinflammatory eicosanoids to specialized proresolving mediators, including a recently identified new pathway of mediators, termed maresin conjugates in tissue regeneration (MCTR), which includes MCTR1, MCTR2, and MCTR3. Here, we addressed whether each MCTR can impact the known vascular actions of cysteinyl leukotrienes. Leukotriene D4 (LTD4; 1.5 nmol/mouse) initiated vascular leakage in mouse cremaster vessels, which was reduced (>75%) by MCTR1 and MCTR2 (0.15 nmol each). With isolated Ciona intestinalis (sea squirt) primordial hearts, LTD4 (1-100 nM) induced negative inotropic action and lowered heartbeats 20-30%. Each MCTR (1-100 nM) prevented LTD4-reduced heart rates. With human cysteinyl leukotriene receptor-1 (CysLT1) expressed in CHO cells, each MCTR (10-100 nM) significantly reduced LTD4-initiated signaling. To assess the contribution of CysLT1 in the proresolving actions of MCTR, we carried out human macrophage (MΦ) phagocytosis. Each MCTR (0.1-10 nM) stimulated human MΦ phagocytosis of live Escherichia coli, whereas LTD4 did not stimulate phagocytosis. MCTR-activated phagocytosis was significantly blocked by a pharmacologic receptor antagonist (MK571). With both CHO-CysLT1 and human MΦs, each MCTR competed for specific [3H]-LTD4 binding with apparent lower affinity than LTD4. Thus, each MCTR functionally interacts with human CysLT1 to pharmacologically counter-regulate vascular responses and stimulate physiologic phagocytosis with MΦs.-Chiang, N., Riley, I. R., Dalli, J., Rodriguez, A. R., Spur, B. W., Serhan, C. N. New maresin conjugates in tissue regeneration pathway counters leukotriene D4-stimulated vascular responses.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Leucotrieno D4/farmacologia , Macrófagos/efeitos dos fármacos , Fagocitose , Regeneração , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiologia , Células CHO , Células Cultivadas , Ciona intestinalis , Cricetinae , Cricetulus , Humanos , Macrófagos/metabolismo , Receptores de Leucotrienos/agonistas , Receptores de Leucotrienos/metabolismo
19.
Nat Commun ; 9(1): 59, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302056

RESUMO

Proinflammatory eicosanoids (prostaglandins and leukotrienes) and specialized pro-resolving mediators (SPM) are temporally regulated during infections. Here we show that human macrophage phenotypes biosynthesize unique lipid mediator signatures when exposed to pathogenic bacteria. E. coli and S. aureus each stimulate predominantly proinflammatory 5-lipoxygenase (LOX) and cyclooxygenase pathways (i.e., leukotriene B4 and prostaglandin E2) in M1 macrophages. These pathogens stimulate M2 macrophages to produce SPMs including resolvin D2 (RvD2), RvD5, and maresin-1. E. coli activates M2 macrophages to translocate 5-LOX and 15-LOX-1 to different subcellular locales in a Ca2+-dependent manner. Neither attenuated nor non-pathogenic E. coli mobilize Ca2+ or activate LOXs, rather these bacteria stimulate prostaglandin production. RvD5 is more potent than leukotriene B4 at enhancing macrophage phagocytosis. These results indicate that M1 and M2 macrophages respond to pathogenic bacteria differently, producing either leukotrienes or resolvins that further distinguish inflammatory or pro-resolving phenotypes.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Leucotrieno B4/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Cálcio/metabolismo , Humanos , Fagocitose
20.
J Leukoc Biol ; 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29377345

RESUMO

Local production and downstream metabolism of specialized proresolving lipid mediators (SPMs) are pivotal in regulating their biological actions during resolution of inflammation. Resolvin D4 (RvD4: 4S,5R,17S-trihydroxydocosa-6E,8E,10Z,13Z,15E,19Z hexaenoic acid) is one of the more recently elucidated SPMs with complete stereochemistry biosynthesized from docosahexaenoic acid . Here, we report a new multimilligram commercial synthesis that afforded enough material for matching, validation, and further evaluation of RvD4 functions. Using LC-MS-MS profiling, RvD4 was identified at bioactive amounts in human (1 pg/mL) and mouse bone marrow (12 pg/femur and tibia). In mouse bone marrow, ischemia increased the formation of RvD4 > 37-fold (455 pg/femur and tibia). Two separate mouse ischemic injury models were used, where RvD4 reduced second organ reperfusion lung injury > 50%, demonstrating organ protection. Structure-function relationships of RvD4 demonstrated > 40% increase in neutrophil and monocyte phagocytic function in human whole blood in comparison with 2 separate trans-containing double bond isomers that were inactive. These 2 isomers were prepared by organic synthesis: 4S,5R,17S-trihydroxydocosa-6E,8E,10E,13Z,15E,19Z-hexaenoic acid (10-trans-RvD4), a natural isomer, and 4S,5R,17S-trihydroxydocosa-6E,8E,10E,13E,15E,19Z-hexaenoic acid (10,13-trans-RvD4), a rogue isomer. Compared to leukotriene B4 , D-series resolvins (RvD1, RvD2, RvD3, RvD4, or RvD5) did not stimulate human neutrophil chemotaxis monitored via real-time microfluidics chambers. A novel 17-oxo-containing-RvD4 product of eicosanoid oxidoreductase was identified with human bone marrow cells. Comparison of 17-oxo-RvD4 to RvD4 demonstrated that with human leukocytes 17-oxo-RvD4 was inactive. Together, these provide commercial-scale synthesis that permitted a second independent validation of RvD4 complete stereochemical structure as well as evidence for RvD4 regulation in tissues and its stereoselective phagocyte responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...