Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 20(6): 1140-1153, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35244326

RESUMO

Maize is one of the world's most widely cultivated crops. As future demands for maize will continue to rise, fields will face ever more frequent and extreme weather patterns that directly affect crop productivity. Development of environmentally resilient crops with improved standability in the field, like wheat and rice, was enabled by shifting the architecture of plants to a short stature ideotype. However, such architectural change has not been implemented in maize due to the unique interactions between gibberellin (GA) and floral morphology which limited the use of the same type of mutations as in rice and wheat. Here, we report the development of a short stature maize ideotype in commercial hybrid germplasm, which was generated by targeted suppression of the biosynthetic pathway for GA. To accomplish this, we utilized a dominant, miRNA-based construct expressed in a hemizygous state to selectively reduce expression of the ZmGA20ox3 and ZmGA20ox5 genes that control GA biosynthesis primarily in vegetative tissues. Suppression of both genes resulted in the reduction of GA levels leading to inhibition of cell elongation in internodal tissues, which reduced plant height. Expression of the miRNA did not alter GA levels in reproductive tissues, and thus, the reproductive potential of the plants remained unchanged. As a result, we developed a dominant, short-stature maize ideotype that is conducive for the commercial production of hybrid maize. We expect that the new maize ideotype would enable more efficient and more sustainable maize farming for a growing world population.


Assuntos
MicroRNAs , Oryza , Produtos Agrícolas/genética , Giberelinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oryza/genética , Proteínas de Plantas , Triticum/genética , Zea mays/metabolismo
2.
Biochem J ; 404(3): 439-48, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17313371

RESUMO

The development of nematicides targeting parasitic nematodes of animals and plants requires the identification of biochemical targets not found in host organisms. Recent studies suggest that Caenorhabditis elegans synthesizes phosphocholine through the action of PEAMT (S-adenosyl-L-methionine:phosphoethanolamine N-methyltransferases) that convert phosphoethanolamine into phosphocholine. Here, we examine the function of a PEAMT from C. elegans (gene: pmt-1; protein: PMT-1). Our analysis shows that PMT-1 only catalyses the conversion of phosphoethanolamine into phospho-monomethylethanolamine, which is the first step in the PEAMT pathway. This is in contrast with the multifunctional PEAMT from plants and Plasmodium that perform multiple methylations in the pathway using a single enzyme. Initial velocity and product inhibition studies indicate that PMT-1 uses a random sequential kinetic mechanism and is feedback inhibited by phosphocholine. To examine the effect of abrogating PMT-1 activity in C. elegans, RNAi (RNA interference) experiments demonstrate that pmt-1 is required for worm growth and development and validate PMT-1 as a potential target for inhibition. Moreover, providing pathway metabolites downstream of PMT-1 reverses the RNAi phenotype of pmt-1. Because PMT-1 is not found in mammals, is only distantly related to the plant PEAMT and is conserved in multiple parasitic nematodes of humans, animals and crop plants, inhibitors targeting it may prove valuable in human and veterinary medicine and agriculture.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Metiltransferases/metabolismo , Fosfatidilcolinas/biossíntese , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Humanos , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA , Alinhamento de Sequência , Especificidade por Substrato
3.
Genome Biol ; 4(4): R26, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12702207

RESUMO

BACKGROUND: Plant parasitic nematodes are major pathogens of most crops. Molecular characterization of these species as well as the development of new techniques for control can benefit from genomic approaches. As an entrée to characterizing plant parasitic nematode genomes, we analyzed 5,700 expressed sequence tags (ESTs) from second-stage larvae (L2) of the root-knot nematode Meloidogyne incognita. RESULTS: From these, 1,625 EST clusters were formed and classified by function using the Gene Ontology (GO) hierarchy and the Kyoto KEGG database. L2 larvae, which represent the infective stage of the life cycle before plant invasion, express a diverse array of ligand-binding proteins and abundant cytoskeletal proteins. L2 are structurally similar to Caenorhabditis elegans dauer larva and the presence of transcripts encoding glyoxylate pathway enzymes in the M. incognita clusters suggests that root-knot nematode larvae metabolize lipid stores while in search of a host. Homology to other species was observed in 79% of translated cluster sequences, with the C. elegans genome providing more information than any other source. In addition to identifying putative nematode-specific and Tylenchida-specific genes, sequencing revealed previously uncharacterized horizontal gene transfer candidates in Meloidogyne with high identity to rhizobacterial genes including homologs of nodL acetyltransferase and novel cellulases. CONCLUSIONS: With sequencing from plant parasitic nematodes accelerating, the approaches to transcript characterization described here can be applied to more extensive datasets and also provide a foundation for more complex genome analyses.


Assuntos
RNA de Helmintos/análise , RNA de Helmintos/classificação , Tylenchoidea/genética , Animais , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Análise por Conglomerados , Biologia Computacional , Etiquetas de Sequências Expressas , Transferência Genética Horizontal , Genes de Helmintos , Larva/genética , Fenótipo , Interferência de RNA , RNA de Helmintos/fisiologia , Homologia de Sequência , Transcrição Gênica , Tylenchida/genética , Tylenchoidea/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...