Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14547, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008524

RESUMO

Leaf decomposition is the primary process in release of nutrients in the dynamic mangrove habitat, supporting the ecosystem food webs. On most environments, fungi are an essential part of this process. However, due to the peculiarities of mangrove forests, this group is currently neglected. Thus, this study tests the hypothesis that fungal communities display a specific succession pattern in different mangrove species and this due to differences in their ecological role. A molecular approach was employed to investigate the dynamics of the fungal community during the decomposition of three common plant species (Rhizophora mangle, Laguncularia racemosa, and Avicennia schaueriana) from a mangrove habitat located at the southeast of Brazil. Plant material was the primary driver of fungi communities, but time also was marginally significant for the process, and evident changes in the fungal community during the decomposition process were observed. The five most abundant classes common to all the three plant species were Saccharomycetes, Sordariomycetes, Tremellomycetes, Eurotiomycetes, and Dothideomycetes, all belonging to the Phylum Ascomycota. Microbotryomycetes class were shared only by A. schaueriana and L. racemosa, while Agaricomycetes class were shared by L. racemosa and R. mangle. The class Glomeromycetes were shared by A. schaueriana and R. mangle. The analysis of the core microbiome showed that Saccharomycetes was the most abundant class. In the variable community, Sordariomycetes was the most abundant one, mainly in the Laguncularia racemosa plant. The results presented in this work shows a specialization of the fungal community regarding plant material during litter decomposition which might be related to the different chemical composition and rate of degradation.


Assuntos
Avicennia , Combretaceae , Microbiota , Rhizophoraceae , Avicennia/metabolismo , Brasil , Folhas de Planta/metabolismo , Plantas , Rhizophoraceae/microbiologia
2.
Braz J Microbiol ; 51(3): 1233-1240, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32363565

RESUMO

Social interactions impact microbial communities and these relationships are mediated by small molecules. The chemical ecology of bacteria on the phylloplane environment is still little explored. The harsh environmental conditions found on leaf surface require high metabolic performances of the bacteria in order to survive. That is interesting both for scientific fields of prospecting natural molecules and for the ecological studies. Important queries about the bacterial lifestyle on leaf surface remain not fully comprehended. Does the hostility of the environment increase the populations' cellular altruism by the production of molecules, which can benefit the whole community? Or does the reverse occur and the production of molecules related to competition between species is increased? Does the phylogenetic distance between the bacterial populations influence the chemical profile during social interactions? Do phylogenetically related bacteria tend to cooperate more than the distant ones? The phylloplane contains high levels of yet uncultivated microorganisms, and understanding the molecular basis of the social networks on this habitat is crucial to gain new insights on the ecology of the mysterious community members due to interspecies molecular dependence. Here, we review and discuss what is known about bacterial social interactions and their chemical lifestyle on leaf surface.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Folhas de Planta/microbiologia , Bactérias/classificação , Bactérias/genética , Ecossistema , Filogenia
3.
FEMS Microbiol Ecol ; 96(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32124916

RESUMO

Plants modulate the soil microbiota by root exudation assembling a complex rhizosphere microbiome with organisms spanning different trophic levels. Here, we assessed the diversity of bacterial, fungal and cercozoan communities in landraces and modern varieties of wheat. The dominant taxa within each group were the bacterial phyla Proteobacteria, Actinobacteria and Acidobacteria; the fungi phyla Ascomycota, Chytridiomycota and Basidiomycota; and the Cercozoa classes Sarcomonadea, Thecofilosea and Imbricatea. We showed that microbial networks of the wheat landraces formed a more intricate network topology than that of modern wheat cultivars, suggesting that breeding selection resulted in a reduced ability to recruit specific microbes in the rhizosphere. The high connectedness of certain cercozoan taxa to bacteria and fungi indicated trophic network hierarchies where certain predators gain predominance over others. Positive correlations between protists and bacteria in landraces were preserved as a subset in cultivars as was the case for the Sarcomonadea class with Actinobacteria. The correlations between the microbiome structure and plant genotype observed in our results suggest the importance of top-down control by organisms of higher trophic levels as a key factor for understanding the drivers of microbiome community assembly in the rhizosphere.


Assuntos
Microbiota , Rizosfera , Bactérias/genética , Fungos/genética , Raízes de Plantas , Microbiologia do Solo , Triticum
4.
Braz J Microbiol ; 50(4): 1041-1050, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31473927

RESUMO

Mangroves are dynamic and unique ecosystems that provide important ecological services to coastal areas. The phylloplane is one of the greatest microbial habitats, and most of its microorganisms are uncultivated under common laboratory conditions. Bacterial community structure of Laguncularia racemosa phylloplane, a well-adapted mangrove species with salt exudation at foliar levels, was accessed through 16S rRNA amplicon sequencing. Sampling was performed in three different sites across a transect from upland to the seashore in a preserved mangrove forest located in the city of Cananéia, São Paulo State, Brazil. Higher bacterial diversity was observed in intermediary locations between the upland and the seashore, showing that significant intraspecific spatial variation in bacterial communities exists between a single host species with the selection of specific population between an environmental transect.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Combretaceae/microbiologia , Bactérias/classificação , Bactérias/genética , Brasil , DNA Bacteriano/genética , Ecossistema , RNA Ribossômico 16S/genética , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...