Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930874

RESUMO

The diketopyrrolopyrrole (DPP) unit represents one of the building blocks more widely employed in the field of organic electronics; in most of the reported DPP-based small molecules, this unit represents the electron acceptor core symmetrically coupled to donor moieties, and the solubility is guaranteed by functionalizing lactamic nitrogens with long and branched alkyl tails. In this paper, we explored the possibility of modulating the solubility by realizing asymmetric DPP derivatives, where the molecular structure is extended in just one direction. Four novel derivatives have been prepared, characterized by a common dithyenil-DPP fragment and functionalized on one side by a thiophene unit linked to different auxiliary electron acceptor groups. As compared to previously reported symmetric analogs, the novel dyes showed an increased solubility in chloroform and proved to be soluble in THF as well. The novel dyes underwent a thorough optical and electrochemical characterization. Electronic properties were studied at the DFT levels. All the dyes were used as active layers in organic field effect transistors, showing balanced charge transport properties.

2.
ACS Appl Mater Interfaces ; 13(7): 8631-8642, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33583173

RESUMO

Electronic devices relying on the combination of different conjugated organic materials are considerably appealing for their potential use in many applications such as photovoltaics, light emission, and digital/analog circuitry. In this study, the electrical response of field-effect transistors achieved through the evaporation of picene and PDIF-CN2 molecules, two well-known organic semiconductors with remarkable charge transport properties, was investigated. With the main goal to get a balanced ambipolar response, various device configurations bearing double-layer, triple-layer, and codeposited active channels were analyzed. The most suitable choices for the layer deposition processes, the related characteristic parameters, and the electrode position were identified to this purpose. In this way, ambipolar organic field-effect transistors exhibiting balanced mobility values exceeding 0.1 cm2 V-1 s-1 for both electrons and holes were obtained. These experimental results highlight also how the combination between picene and PDIF-CN2 layers allows tuning the threshold voltages of the p-type response. Scanning Kelvin probe microscopy (SKPM) images acquired on picene/PDIF-CN2 heterojunctions suggest the presence of an interface dipole between the two organic layers. This feature is related to the partial accumulation of space charge at the interface being enhanced when the electrons are depleted in the underlayer.

3.
Sci Rep ; 8(1): 12015, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104704

RESUMO

We discuss the formation and post-deposition instability of nanodrop-like structures in thin films of PDIF-CN2 (a perylene derivative) deposited via supersonic molecular beam deposition technique on highly hydrophobic substrates at room temperature. The role of the deposition rate on the characteristic lengths of the organic nanodrops has been investigated by a systematic analysis of atomic force microscope images of the thin films and through the use of the height-height correlation function. The nanodrops appear to be a metastable configuration for the freshly-deposited films. For this reason, post-deposition wetting effect has been examined with unprecedented accuracy throughout a year of experimental observations. The observed time scales, from few hours to months, are related to the growth rate, and characterize the thin films morphological reordering from three-dimensional nanodrops to a well-connected terraced film. While the interplay between adhesion and cohesion energies favors the formation of 3D-mounted structures during the growth, wetting phenomenon following the switching off of the molecular flux is found to be driven by an instability. A slow rate downhill process survives at the molecular flux shutdown and it is accompanied and maybe favored by the formation of a precursor layer composed of more lying molecules. These results are supported by simulations based on a non-linear stochastic model. The instability has been simulated, for both the growth and the post-growth evolution. To better reproduce the experimental data it is needed to introduce a surface equalizer term characterized by a relaxation time taking into account the presence of a local mechanism of molecular correlation.

4.
Langmuir ; 34(10): 3207-3214, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29482328

RESUMO

We report high-resolution surface morphology and friction force maps of polycrystalline organic thin films derived by deposition of the n-type perylene diimide semiconductor PDI8-CN2. We show that the in-plane molecular arrangement into ordered, cofacial slip-stacked rows results in a largely anisotropic surface structure, with a characteristic sawtooth corrugation of a few Ångstroms wavelength and height. Load-controlled experiments reveal different types of friction contrast between the alternating sloped and stepped regions, with transitions from atomic-scale dissipative stick-slip to smooth sliding with ultralow friction within the surface unit cell. Notably, such a rich phenomenology is captured under ambient conditions. We demonstrate that friction contrast is well reproduced by numerical simulations assuming a reduced corrugation of the tip-molecule potential nearby the step edges. We propose that the side alkyl chains pack into a compact low-surface-energy overlayer, and friction modulation reflects periodic heterogeneity of chains bending properties and subsurface anchoring to the perylene cores.

5.
J R Soc Interface ; 12(108): 20141268, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26063814

RESUMO

Porous silicon (PSi) non-symmetric multi-layers are modified by organic molecular beam deposition of an organic semiconductor, namely the N,N'-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2). Joule evaporation of PDIF-CN2 into the PSi sponge-like matrix not only improves but also adds transducing skills, making this solid-state device a dual signal sensor for chemical monitoring. PDIF-CN2 modified PSi optical microcavities show an increase of about five orders of magnitude in electric current with respect to the same bare device. This feature can be used to sense volatile substances. PDIF-CN2 also improves chemical resistance of PSi against alkaline and acid corrosion.


Assuntos
Técnicas Eletroquímicas/métodos , Imidas , Modelos Químicos , Semicondutores , Porosidade
6.
ACS Appl Mater Interfaces ; 4(9): 4491-8, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-22891711

RESUMO

Reduction of strongly oxidized carbon black by hydrazine hydrate yields water-insoluble graphene-like sheets that undergo to self-assembling in thin film on surfaces after drying. The height of a drop-casted graphene-like film was determined by atomic force microscopy (AFM) to be around 20 nm, corresponding to approximately 25 graphene-like layers. The oxidized carbon black and the corresponding reduced form were carefully characterized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA