Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(10): 100404, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955323

RESUMO

Despite the unquestionable empirical success of quantum theory, witnessed by the recent uprising of quantum technologies, the debate on how to reconcile the theory with the macroscopic classical world is still open. Spontaneous collapse models are one of the few testable solutions so far proposed. In particular, the continuous spontaneous localization (CSL) model has become subject of intense experimental research. Experiments looking for the universal force noise predicted by CSL in ultrasensitive mechanical resonators have recently set the strongest unambiguous bounds on CSL. Further improving these experiments by direct reduction of mechanical noise is technically challenging. Here, we implement a recently proposed alternative strategy that aims at enhancing the CSL noise by exploiting a multilayer test mass attached on a high quality factor microcantilever. The test mass is specifically designed to enhance the effect of CSL noise at the characteristic length r_{c}=10^{-7} m. The measurements are in good agreement with pure thermal motion for temperatures down to 100 mK. From the absence of excess noise, we infer a new bound on the collapse rate at the characteristic length r_{c}=10^{-7} m, which improves over previous mechanical experiments by more than 1 order of magnitude. Our results explicitly challenge a well-motivated region of the CSL parameter space proposed by Adler.

2.
Nat Commun ; 4: 1793, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23653205

RESUMO

The lack of long-range structural order in amorphous solids induces well known thermodynamic anomalies, which are the manifestation of distinct peculiarities in the vibrational spectrum. Although the impact of such anomalies vanishes in the long wavelength, elastic continuum limit, it dominates at length scales comparable to interatomic distances, implying an intermediate transition regime still poorly understood. Here we report a study of such mesoscopic domains by means of a broadband version of picosecond photo-acoustics, developed to coherently generate and detect hypersonic sound waves in the sub-THz region with unprecedented sampling efficiency. We identify a temperature-dependent fractal v(3/2) frequency behaviour of the sound attenuation, pointing to the presence of marginally stable regions and a transition between the two above mentioned limits. The essential features of this behaviour are captured by a theoretical approach based on random spatial variation of the shear modulus, including anharmonic interactions.

3.
Opt Express ; 13(5): 1696-701, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19495047

RESUMO

We present the characterization of highly photorefractive Er3+/Yb3+-doped 75SiO2-25GeO2 planar waveguides, single mode at 1550 nm, deposited by radio-frequency-magnetron-sputtering (RFMS) technique. Details of the deposition process are reported. The material presents an intense absorption band (alpha approximately 10;3/10;4 cm;-1) in the UV region. Irradiations by a KrF excimer laser source at lambda = 248 nm have produced large positive (up to 310-3) refractive index changes, without the need of particular sensitization procedures. Direct measurements of UV photo-induced volume densification demonstrates that glass compaction accounts for large part of the refractive index change. Highly efficient photo-induced phase gratings have thus been fabricated in the waveguide.

4.
Exp Gerontol ; 26(2-3): 217-32, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-1915692

RESUMO

Disorders of sleep and circadian rhythmicity are characteristic of both advancing age and manned spaceflight. Sleep fragmentation, reduced nocturnal sleep tendency and sleep efficiency, reduced daytime alertness, and increased daytime napping are common to both of these conditions. Recent research on the pathophysiology and treatment of disrupted sleep in older people has led to a better understanding of how the human circadian pacemaker regulates the timing of the daily sleep-wake cycle and how it responds to the periodic changes in the light-dark cycle to which we are ordinarily exposed. These findings have led to new treatments for some of the sleep disorders common to older individuals, using carefully timed exposure to bright light and darkness to manipulate the phase and/or amplitude of the circadian timing system. These insights and treatment approaches have direct applications in the design of countermeasures allowing astronauts to overcome some of the challenges which manned spaceflight poses for the human circadian timing system. We have conducted an operational feasibility study on the use of scheduled exposure to bright light and darkness prior to launch in order to facilitate adaptation of the circadian system of a NASA space shuttle crew to the altered sleep-wake schedule required for their mission. The results of this study illustrate how an understanding of the properties of the human circadian timing system and the consequences of circadian disruption can be applied to manned spaceflight.


Assuntos
Envelhecimento/fisiologia , Ritmo Circadiano/fisiologia , Voo Espacial , Adulto , Ritmo Circadiano/efeitos da radiação , Humanos , Luz , Sono/fisiologia , Sono/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA