Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 129(5): 57008, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34014776

RESUMO

BACKGROUND: Epidemiologic studies indicate that early life arsenic exposures are linked to an increased risk of cardiovascular diseases. Different oxidation and methylation states of arsenic exist in the environment and are formed in vivo via the action of arsenic (+3 oxidation state) methyltransferase (As3MT). Methylated arsenicals are pro-atherogenic postnatally, but pre- and perinatal effects are unclear. This is particularly important because methylated arsenicals are known to cross the placenta. OBJECTIVES: We tested the effects of early life exposure to inorganic and methylated arsenicals on atherosclerotic plaque formation and its composition in apolipoprotein E knock-out (apoE-/-) mice and evaluated whether apoE-/- mice lacking As3MT expression were susceptible to this effect. METHODS: We exposed apoE-/- or apoE-/-/As3MT-/- mice to 200 ppb inorganic or methylated arsenic in the drinking water from conception to weaning and assessed atherosclerotic plaques in the offspring at 18 wk of age. Mixed regression models were used to estimate the mean difference in each outcome relative to controls, adjusting for sex and including a random effects term to account for within-litter clustering. RESULTS: Early life exposure to inorganic arsenic, and more profoundly methylated arsenicals, resulted in significantly larger plaques in the aortic arch and sinus in both sexes. Lipid levels in these plaques were higher without a substantial difference in macrophage numbers. Smooth muscle cell content was not altered, but collagen content was lower. Importantly, there were sex-specific differences in these observations, where males had higher lipids and lower collagen in the plaque, but females did not. In mice lacking As3MT, arsenic did not alter the plaque size, although the size was highly variable. In addition, control apoE-/-/As3MT-/- mice had significantly larger plaque size compared with control apoE-/-. CONCLUSION: This study shows that early life exposure to inorganic and methylated arsenicals is pro-atherogenic with sex-specific differences in plaque composition and a potential role for As3MT in mice. https://doi.org/10.1289/EHP8171.


Assuntos
Arsênio , Placa Aterosclerótica , Efeitos Tardios da Exposição Pré-Natal , Animais , Arsênio/toxicidade , Arsenicais , Feminino , Masculino , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Placa Aterosclerótica/induzido quimicamente , Gravidez , Fatores Sexuais
2.
Toxicol Sci ; 166(1): 213-218, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376133

RESUMO

Arsenic exposure increases the risk of atherosclerosis, the gradual occlusion of the large arteries with fibro-fatty plaque. While epidemiologic data provide convincing evidence this is true at higher exposures, it is unclear whether this may occur at low arsenic exposures, near the maximum contaminant level of 10 ppb. We have previously shown that 200 ppb arsenite in the drinking water increased the atherosclerosis in apolipoprotein E knock-out (apoE-/-) mice after 13 weeks, but the effects of lower concentrations were unknown. Therefore, here, we analyzed the effects of oral exposure to arsenite from 10 to 200 ppb after 13 weeks. Importantly, we found that even at the lowest concentration of arsenite, there was a significant increase in atherosclerotic plaque size. In our previous studies, we found that arsenite exposure resulted in decreased smooth muscle cells (SMCs) and collagen within the plaque. This change is indicative of a less stable phenotype that could increase the risk of rupture and subsequently, myocardial infarct or stroke in humans. In addition, we observed that lipid increased within the plaque without concomitant increase in macrophage content, suggesting that the macrophages were retaining more lipid intracellularly. We also assessed these plaque components in apoE-/- mice exposed to 10-200 ppb arsenite. Interestingly, we observed that macrophage lipid accumulation occurred at lower concentrations than the decreased SMC/collagen content. Together these data suggest that in the apoE-/- model, low arsenite concentrations are pro-atherogenic and that macrophage lipid homeostasis is more sensitive to arsenite-induced perturbation than the SMCs.


Assuntos
Apolipoproteínas E , Arsenitos/toxicidade , Aterosclerose/induzido quimicamente , Poluentes Ambientais/toxicidade , Placa Aterosclerótica/induzido quimicamente , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Camundongos , Camundongos Knockout , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
3.
Environ Health Perspect ; 125(7): 077001, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28728140

RESUMO

BACKGROUND: Arsenic is metabolized through a series of oxidative methylation reactions by arsenic (3) methyltransferase (As3MT) to yield methylated intermediates. Although arsenic exposure is known to increase the risk of atherosclerosis, the contribution of arsenic methylation and As3MT remains undefined. OBJECTIVES: Our objective was to define whether methylated arsenic intermediates were proatherogenic and whether arsenic biotransformation by As3MT was required for arsenic-enhanced atherosclerosis. METHODS: We utilized the apoE−/− mouse model to compare atherosclerotic plaque size and composition after inorganic arsenic, methylated arsenical, or arsenobetaine exposure in drinking water. We also generated apoE−/−/As3mt−/− double knockout mice to test whether As3MT-mediated biotransformation was required for the proatherogenic effects of inorganic arsenite. Furthermore, As3MT expression and function were assessed in in vitro cultures of plaque-resident cells. Finally, bone marrow transplantation studies were performed to define the contribution of As3MT-mediated methylation in different cell types to the development of atherosclerosis after inorganic arsenic exposure. RESULTS: We found that methylated arsenicals, but not arsenobetaine, are proatherogenic and that As3MT is required for arsenic to induce reactive oxygen species and promote atherosclerosis. Importantly, As3MT was expressed and functional in multiple plaque-resident cell types, and transplant studies indicated that As3MT is required in extrahepatic tissues to promote atherosclerosis. CONCLUSION: Taken together, our findings indicate that As3MT acts to promote cardiovascular toxicity of arsenic and suggest that human AS3MT SNPs that correlate with enzyme function could predict those most at risk to develop atherosclerosis among the millions that are exposed to arsenic. https://doi.org/10.1289/EHP806.


Assuntos
Arsênio/toxicidade , Arsenicais/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Expressão Gênica , Metiltransferases/genética , Poluentes Químicos da Água/toxicidade , Animais , Humanos , Masculino , Metilação , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...