Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35329324

RESUMO

Masks are effective for preventing the spread of COVID-19 and other respiratory infections. If antimicrobial properties can be applied to the non-woven fabric filters in masks, they can become a more effective countermeasure against human-to-human and environmental infections. We investigated the possibilities of carrying antimicrobial agents on the fiber surfaces of non-woven fabric filters by applying silica-resin coating technology, which can form silica-resin layers on such fabrics at normal temperature and pressure. Scanning electron microscopy and electron probe microanalysis showed that a silica-resin layer was formed on the fiber surface of non-woven fabric filters. Bioassays for coronavirus and quantitative reverse transcription-polymerase chain reactions (RT-PCR) revealed that all antimicrobial agents tested loaded successfully onto non-woven fabric filters without losing their inactivation effects against the human coronavirus (inhibition efficacy: >99.999%). These results indicate that this technology could be used to load a functional substance onto a non-woven fabric filter by vitrifying its surface. Silica-resin coating technology also has the potential of becoming an important breakthrough not only in the prevention of infection but also in various fields, such as prevention of building aging, protection of various cultural properties, the realization of a plastic-free society, and prevention of environmental pollution.


Assuntos
COVID-19 , Dióxido de Silício , Antivirais , COVID-19/prevenção & controle , Humanos , Máscaras , Têxteis
2.
Int J Mol Sci ; 20(3)2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30720745

RESUMO

Drug repositioning promises the advantages of reducing costs and expediting approvalschedules. An induction of the anesthetic and sedative drug; midazolam (MDZ), regulatesinhibitory neurotransmitters in the vertebrate nervous system. In this study we show the potentialfor drug repositioning of MDZ for dentin regeneration. A porcine dental pulp-derived cell line(PPU-7) that we established was cultured in MDZ-only, the combination of MDZ with bonemorphogenetic protein 2, and the combination of MDZ with transforming growth factor-beta 1. Thedifferentiation of PPU-7 into odontoblasts was investigated at the cell biological and genetic level.Mineralized nodules formed in PPU-7 were characterized at the protein and crystal engineeringlevels. The MDZ-only treatment enhanced the alkaline phosphatase activity and mRNA levels ofodontoblast differentiation marker genes, and precipitated nodule formation containing a dentinspecificprotein (dentin phosphoprotein). The nodules consisted of randomly orientedhydroxyapatite nanorods and nanoparticles. The morphology, orientation, and chemicalcomposition of the hydroxyapatite crystals were similar to those of hydroxyapatite that hadtransformed from amorphous calcium phosphate nanoparticles, as well as the hydroxyapatite inhuman molar dentin. Our investigation showed that a combination of MDZ and PPU-7 cellspossesses high potential of drug repositioning for dentin regeneration.


Assuntos
Dentina/efeitos dos fármacos , Reposicionamento de Medicamentos , Midazolam/farmacologia , Regeneração , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/uso terapêutico , Linhagem Celular , Dentina/fisiologia , Midazolam/uso terapêutico , Odontoblastos , Suínos , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/uso terapêutico
3.
Dent Mater J ; 35(3): 470-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252004

RESUMO

This study was designed to evaluate the volume of alveolar bone augmentation after immediate implant placement using demineralized bone. We examined the collagen matrix of demineralized bone and biologically active substances contained therein. Rat maxillary first molars were extracted, and the animals were divided into five groups as follows: tooth extraction only, implant into the mesial root socket, implant and other root sockets covered with demineralized bone sheet, implant and other root sockets filled with demineralized bone powder under the sheet, and implant and other root sockets covered with demineralized bone sheet from which proteins were extracted. We ascertained whether biologically active substances are contained in extracted proteins. Biologically active substances were detected in extracted proteins. Conditions using demineralized bone sheet with biologically active substances significantly augmented the height of the alveolar bone. Such resorbable membranes containing biologically active substances hold promise as clinical agents for bone augmentation upon implantation.


Assuntos
Implantes Dentários , Processo Alveolar , Aumento do Rebordo Alveolar , Animais , Implantação Dentária Endóssea , Ratos , Alvéolo Dental/cirurgia
4.
J Conserv Dent ; 18(6): 427-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26752833

RESUMO

BACKGROUND: Volatile sulfur compounds (VSCs) produced inside the mouth are a well-known cause of halitosis. Recent studies have suggested that VSCs modify the pathology of periodontitis by encouraging the migration of bacterial toxins associated with increased permeability of gingival epithelia, and enhancing the production of matrix metalloproteinases in gingival connective tissue. Nonetheless, the effects on the enamel of direct exposure to VSCs within the oral cavity remain unclear. In the present study, we observed the effects of VSCs in the form of hydrogen sulfide (H2S) on enamel surfaces and determined their effects on restorations. MATERIALS AND METHODS: Extracted human tooth and bovine tooth samples were divided into the H2S experimental side and the control side. We observed the effects of H2S on enamel surfaces using electron microscopy and conducted a shear test. RESULTS: We found that exposure to H2S obscured the enamel surface's crystal structure. The surface also exhibited coarseness and reticular changes. Shear testing did not reveal any differences in bond strength. CONCLUSIONS: Our findings suggested that H2S occurring inside the mouth causes changes to the crystal structure of the enamel surface that can lead to tooth wear, but that it does not diminish the effects of dental bonding in adhesive restorations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...