Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Oral Biol ; 156: 105826, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898061

RESUMO

OBJECTIVE: Human umbilical cord perivascular cells (HUCPVCs) are derived from the human umbilical cord perivascular tissue and are expected to replace mesenchymal stromal cells in the future. We investigated the synergistic effects of fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 1 (TGF-ß1) on HUCPVC mineralization. DESIGN: We prepared HUCPVCs with (FGF(+)HUCPVCs) or without FGF-2 (FGF(-)HUCPVCs) in the presence of activated vitamin D3, a bone morphogenic protein inhibitor, and TGF-ß1. We examined the cell proliferative capacity, expression of various hard tissue-forming cell gene markers, and mineralization induction ability and identified the crystalline phases of the mineralized nodules. RESULTS: FGF(+)HUCPVCs exhibited higher intracellular alkaline phosphatase (ALP) gene expression and ALP activity, and their cell proliferation rate was higher than that of FGF(-)HUCPVCs. The expression levels of osteoblast marker genes increased in FGF(+)HUCPVCs, whereas those of elastic fiber and muscle cell markers increased in FGF(-)HUCPVCs. The expression of genes related to matrix vesicle-mediated mineralization was increased in FGF(+)HUCPVCs. While FGF(-)HUCPVCs displayed myofibroblast-like properties and could not induce mineralization, FGF(+)HUCPVCs demonstrated the ability to produce mineralized nodules. The resulting mineralized nodules consisted of hydroxyapatite as the major phase and minor amounts of octacalcium phosphate. The mineralized nodules exhibited the morphological characteristics of bone hydroxyapatite, composed of fibrous hydroxyapatite nanorods and polycrystalline sheets. CONCLUSION: We found that FGF-2 synergizes with TGF-ß1 and is a key factor in the differentiation of HUCPVCs into osteoblast-like cells. Thus, HUCPVCs can potentially serve as a new stem cell source for future bone regeneration and dental treatments.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Células-Tronco Mesenquimais , Humanos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Diferenciação Celular , Cordão Umbilical , Hidroxiapatitas/farmacologia
2.
Int J Implant Dent ; 8(1): 49, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316596

RESUMO

PURPOSE: To investigate the bone augmentation ability of demineralized bone sheets mixed with allogeneic bone with protein fractions containing bioactive substances and the interaction between coexisting bioactive substances and proteins. METHODS: Four types of demineralized bone sheets mixed with allogeneic bone in the presence or absence of bone proteins were created. Transplantation experiments using each demineralized bone sheet were performed in rats, and their ability to induce bone augmentation was analysed by microcomputed tomography images. Bioactive substances in bone proteins were isolated by heparin affinity chromatography and detected by the measurement of alkaline phosphatase activity in human periodontal ligament cells and dual luciferase assays. Noncollagenous proteins (NCPs) coexisting with the bioactive substances were identified by mass spectrometry, and their interaction with bioactive substances was investigated by in vitro binding experiments. RESULTS: Demineralized bone sheets containing bone proteins possessed the ability to induce bone augmentation. Bone proteins were isolated into five fractions by heparin affinity chromatography, and transforming growth factor-beta (TGF-ß) was detected in the third fraction (Hep-c). Dentin matrix protein 1 (DMP1), matrix extracellular phosphoglycoprotein (MEPE), and biglycan (BGN) also coexisted in Hep-c, and the binding of these proteins to TGF-ß increased TGF-ß activity by approximately 14.7% to 32.7%. CONCLUSIONS: Demineralized bone sheets are capable of inducing bone augmentation, and this ability is mainly due to TGF-ß in the bone protein mixed with the sheets. The activity of TGF-ß is maintained when binding to bone NCPs such as DMP1, MEPE, and BGN in the sheets.


Assuntos
Ligamento Periodontal , Fator de Crescimento Transformador beta , Ratos , Humanos , Animais , Microtomografia por Raio-X , Fator de Crescimento Transformador beta/metabolismo , Ligamento Periodontal/metabolismo , Heparina
3.
Arch Oral Biol ; 143: 105540, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087522

RESUMO

OBJECTIVE: During enamel formation, transforming growth factor-beta (TGF-ß) isoforms exhibit different activities for gene expression, apoptosis, and endocytosis. This study aimed to investigate the differential response of TGF-ß isoforms to epithelial-mesenchymal transition (EMT) in enamel epithelial cells. DESIGN: Using a mouse enamel epithelial cell line (mHAT9d) cultured in the presence of each TGF-ß isoform, (1) the morphological changes in EMT were explored, (2) EMT-related genes were analyzed by next-generation sequencing (NGS), (3) TGF-ß pathway for EMT was identified by inhibition experiments, and (4) the expression of the TGF-ß receptor gene in response to the binding affinity of the TGF-ß isoform were analyzed. RESULTS: EMT was observed in mHAT9d cultured in the presence of TGF-ß1 and ß3 but not TGF-ß2. The expression of both epithelial and mesenchymal marker genes was observed in mHAT9d exhibiting EMT. NGS analysis suggested extracellular signal-regulated kinase (ERK) and Rho pathways as TGF-ß signaling pathways associated with EMT. However, EMT in mHAT9d cultured in the presence of TGF-ß1 or ß3 occurred even in presence of an ERK1/2 inhibitor and was suppressed by Rho-kinase inhibitor. The expression of co-receptors for TGF-ß signaling in mHAT9d cells reduced following stimulation with each TGF-ß isoform. In contrast, endoglin levels increased following TGF-ß1 or ß3 stimulation, but no change was noted in response to TGF-ß2. CONCLUSIONS: We propose that in TGF-ß-stimulated enamel epithelial cells, EMT mainly occurred via the Rho signaling pathway, and the differences in response across TGF-ß isoforms were due to their endoglin-mediated binding affinity for the TGF-ß receptor.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta1 , Esmalte Dentário/metabolismo , Endoglina/metabolismo , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fatores de Crescimento Transformadores/metabolismo , Quinases Associadas a rho/metabolismo
4.
J Oral Biosci ; 64(1): 37-42, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34718143

RESUMO

BACKGROUND: Several recent studies have focused on the utility of drug repurposing to expand clinical application of approved therapeutics. Here, we investigate the efficacy of midazolam (MDZ) and cytokines for regenerating calcified tissue, using immortalized porcine dental pulp (PPU7) and mouse skeletal muscle derived myoblast (C2C12) cells, with the goal of repurposing MDZ as a new treatment to facilitate calcified tissue regeneration. HIGHLIGHTS: We noted that PPU7 and C2C12 cells cultured with various MDZ regimens displayed increased bone morphogenic protein (BMP-2), transforming growth factor beta (TGF-ß), and alkaline phosphatase activity. These increases were highest in PPU7 cells cultured with MDZ alone, and in C2C12 cells cultured with MDZ and BMP-2. PPU7 cells cultured under these conditions demonstrated markedly elevated expression of odontoblastic gene markers, indicating their likely differentiation into odontoblasts. Expression levels of osteoblastic gene markers also increased in C2C12 cells, suggesting that MDZ potentiates the effect of BMP-2, inducing osteoblast differentiation in these cells. Newly formed calcified deposits in both PPU7 and C2C12 cells were identified as hydroxyapatite via crystallographic and crystal engineering analyses. CONCLUSION: MDZ increases ALP activity, inducing expression of specific marker genes for both odontoblasts and osteoblasts while promoting hydroxyapatite production in both PPU7 and C2C12 cells. These responses were cell type specific. MDZ treatment alone could induce these changes in PPU7 cells, but C2C12 cell differentiation required BMP-2 addition.


Assuntos
Reposicionamento de Medicamentos , Midazolam , Animais , Proteínas Morfogenéticas Ósseas/farmacologia , Linhagem Celular , Hidroxiapatitas , Camundongos , Suínos
5.
Cells ; 10(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34831233

RESUMO

Human umbilical cord perivascular cells (HUCPVCs), harvested from human umbilical cord perivascular tissue, show potential for future use as an alternative to mesenchymal stromal cells. Here, we present the results for the characterization of the properties alkaline phosphatase-positive HUCPVCs (ALP(+)-HUCPVCs). These ALP(+)-HUCPVCs were created from HUCPVCs in this study by culturing in the presence of activated vitamin D3, an inhibitor of bone morphogenetic protein signaling and transforming growth factor-beta1 (TGF-ß1). The morphological characteristics, cell proliferation, gene expression, and mineralization-inducing ability of ALP(+)-HUCPVCs were investigated at the morphological, biological, and genetic levels. ALP(+)-HUCPVCs possess high ALP gene expression and activity in cells and a slow rate of cell growth. The morphology of ALP(+)-HUCPVCs is fibroblast-like, with an increase in actin filaments containing alpha-smooth muscle actin. In addition to ALP expression, the gene expression levels of type I collagen, osteopontin, elastin, fibrillin-1, and cluster of differentiation 90 are increased in ALP(+)-HUCPVCs. ALP(+)-HUCPVCs do not have the ability to induce mineralization nodules, which may be due to the restriction of phosphate uptake into matrix vesicles. Moreover, ALP(+)-HUCPVCs may produce anti-mineralization substances. We conclude that ALP(+)-HUCPVCs induced from HUCPVCs by a TGF-ß1 stimulation possess myofibroblast-like properties that have little mineralization-inducing ability.


Assuntos
Fosfatase Alcalina/metabolismo , Técnicas de Cultura de Células , Cordão Umbilical/citologia , Citoesqueleto de Actina/metabolismo , Fosfatase Alcalina/genética , Biomarcadores/metabolismo , Calcificação Fisiológica , Diferenciação Celular/genética , Proliferação de Células , Forma Celular , Matriz Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos
6.
Cells ; 9(10)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096862

RESUMO

Mineral trioxide aggregate (MTA) was introduced as a material for dental endodontic regenerative therapy. Here, we show the dynamics of living dental pulp cells in direct contact with an MTA disk. A red fluorescence protein (DsRed) was introduced into immortalized porcine dental pulp cells (PPU7) and cloned. DsRed-PPU7 cells were cultured on the MTA disk and cell proliferation, chemotaxis, the effects of growth factors and the gene expression of cells were investigated at the biological, histomorphological and genetic cell levels. Mineralized precipitates formed in the DsRed-PPU7 cells were characterized with crystal structural analysis. DsRed-PPU7 cells proliferated in the central part of the MTA disk until Day 6 and displayed a tendency to move to the outer circumference. Both transforming growth factor beta and bone morphogenetic protein promoted the proliferation and movement of DsRed-PPU7 cells and also enhanced the expression levels of odontoblastic gene differentiation markers. Mineralized precipitates formed in DsRed-PPU7 were composed of calcium and phosphate but its crystals were different in each position. Our investigation showed that DsRed-PPU7 cells in direct contact with the MTA disk could differentiate into odontoblasts by controlling cell-cell and cell-substrate interactions depending on cell adhesion and the surrounding environment of the MTA.


Assuntos
Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Polpa Dentária/citologia , Óxidos/farmacologia , Silicatos/farmacologia , Animais , Proteínas Morfogenéticas Ósseas/farmacologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Polpa Dentária/ultraestrutura , Combinação de Medicamentos , Fluorescência , Proteínas Luminescentes/metabolismo , Suínos , Fator de Crescimento Transformador beta/farmacologia
7.
Pharmaceutics ; 12(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131534

RESUMO

In drug repositioning research, a new concept in drug discovery and new therapeutic opportunities have been identified for existing drugs. Midazolam (MDZ) is an anesthetic inducer used for general anesthesia. Here, we demonstrate the combined effects of bone morphogenetic protein-2 (BMP-2) and MDZ on osteogenic differentiation. An immortalized mouse myoblast cell line (C2C12 cell) was cultured in the combination of BMP-2 and MDZ (BMP-2+MDZ). The differentiation and signal transduction of C2C12 cells into osteoblasts were investigated at biological, immunohistochemical, and genetic cell levels. Mineralized nodules formed in C2C12 cells were characterized at the crystal engineering level. BMP-2+MDZ treatment decreased the myotube cell formation of C2C12 cells, and enhanced alkaline phosphatase activity and expression levels of osteoblastic differentiation marker genes. The precipitated nodules consisted of randomly oriented hydroxyapatite nanorods and nanoparticles. BMP-2+MDZ treatment reduced the immunostaining for both α1 and γ2 subunits antigens on the gamma-aminobutyric acid type A (GABAA) receptor in C2C12 cells, but enhanced that for BMP signal transducers. Our investigation showed that BMP-2+MDZ has a strong ability to induce the differentiation of C2C12 cells into osteoblasts and has the potential for drug repositioning in bone regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...