Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol Regul ; 91: 100992, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37793962

RESUMO

Blood platelets are produced by megakaryocytes through a complex program of differentiation and play a critical role in hemostasis and thrombosis. These anucleate cells are the target of antithrombotic drugs that prevent them from clumping in cardiovascular disease conditions. Platelets also significantly contribute to various aspects of physiopathology, including interorgan communications, healing, inflammation, and thromboinflammation. Their production and activation are strictly regulated by highly elaborated mechanisms. Among them, those involving inositol lipids have drawn the attention of researchers. Phosphoinositides represent the seven combinatorially phosphorylated forms of the inositol head group of inositol lipids. They play a crucial role in regulating intracellular mechanisms, such as signal transduction, actin cytoskeleton rearrangements, and membrane trafficking, either by generating second messengers or by directly binding to specific domains of effector proteins. In this review, we will explore how phosphoinositides are implicated in controlling platelet production by megakaryocytes and in platelet activation processes. We will also discuss the diversity of phosphoinositides in platelets, their role in granule biogenesis and maintenance, as well as in integrin signaling. Finally, we will address the discovery of a novel pool of phosphatidylinositol 3-monophosphate in the outerleaflet of the plasma membrane of human and mouse platelets.


Assuntos
Plaquetas , Trombose , Animais , Camundongos , Humanos , Plaquetas/patologia , Fosfatidilinositóis/metabolismo , Inflamação , Trombose/metabolismo , Inositol/metabolismo
2.
Biomolecules ; 13(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37189331

RESUMO

Phosphoinositides (PIs) play a crucial role in regulating intracellular signaling, actin cytoskeleton rearrangements, and membrane trafficking by binding to specific domains of effector proteins. They are primarily found in the membrane leaflets facing the cytosol. Our study demonstrates the presence of a pool of phosphatidylinositol 3-monophosphate (PI3P) in the outer leaflet of the plasma membrane of resting human and mouse platelets. This pool of PI3P is accessible to exogenous recombinant myotubularin 3-phosphatase and ABH phospholipase. Mouse platelets with loss of function of class III PI 3-kinase and class II PI 3-kinase α have a decreased level of external PI3P, suggesting a contribution of these kinases to this pool of PI3P. After injection in mouse, or incubation ex vivo in human blood, PI3P-binding proteins decorated the platelet surface as well as α-granules. Upon activation, these platelets were able to secrete the PI3P-binding proteins. These data sheds light on a previously unknown external pool of PI3P in the platelet plasma membrane that recognizes PI3P-binding proteins, leading to their uptake towards α-granules. This study raises questions about the potential function of this external PI3P in the communication of platelets with the extracellular environment, and its possible role in eliminating proteins from the plasma.


Assuntos
Plaquetas , Proteínas de Transporte , Camundongos , Humanos , Animais , Plaquetas/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
3.
Platelets ; 34(1): 2182180, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36880158

RESUMO

Besides their proteome, platelets use, in all responses to the environmental cues, a huge and diverse family of hydrophobic and amphipathic small molecules involved in structural, metabolic and signaling functions; the lipids. Studying how platelet lipidome changes modulate platelet function is an old story constantly renewed through the impressive technical advances allowing the discovery of new lipids, functions and metabolic pathways. Technical progress in analytical lipidomic profiling by top-of-the-line approaches such as nuclear magnetic resonance and gas chromatography or liquid chromatography coupled to mass spectrometry enables either large-scale analysis of lipids or targeted lipidomics. With the support of bioinformatics tools and databases, it is now possible to investigate thousands of lipids over a concentration range of several orders of magnitude. The lipidomic landscape of platelets is considered a treasure trove, not only able to expand our knowledge of platelet biology and pathologies but also to bring diagnostic and therapeutic opportunities. The aim of this commentary article is to summarize the advances in the field and to highlight what lipidomics can tell us about platelet biology and pathophysiology.


What is the context? Lipids are a huge and diverse family of molecules strongly involved in biological membranes organization and dynamics, signal transduction, cell metabolism and intercellular communication.Earlier seminal works using conventional lipid biochemistry methods have shown the essential role of certain classes of lipids in platelet biology and platelet-related pathologiesWhat is new? The important development of modern lipidomic analyses using mass-spectrometry now provides opportunities to investigate the entire platelet lipidome in different conditions.The application of lipidomic approaches to analyze large-scale lipid species allows platelet clinical lipidomics development.What is the impact? Study of the lipidomic landscape of platelets will expand our knowledge of platelet biology and should bring new diagnosis and therapeutic opportunities.Evaluating the functional and clinical significance of the data generated by modern platelet lipidomics appears as a vast and exciting challenge.


Assuntos
Plaquetas , Lipidômica , Humanos , Cromatografia Líquida , Biologia Computacional , Lipídeos
4.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36943412

RESUMO

Phosphoinositides (PIs) are membrane lipids that regulate signal transduction and vesicular trafficking. X-linked centronuclear myopathy (XLCNM), also called myotubular myopathy, results from loss-of-function mutations in the MTM1 gene, which encodes the myotubularin phosphatidylinositol 3-phosphate (PtdIns3P) lipid phosphatase. No therapy for this disease is currently available. Previous studies showed that loss of expression of the class II phosphoinositide 3-kinase (PI3K) PI3KC2ß (PI3KC2B) protein improved the phenotypes of an XLCNM mouse model. PI3Ks are well known to have extensive scaffolding functions and the importance of the catalytic activity of this PI3K for rescue remains unclear. Here, using PI3KC2ß kinase-dead mice, we show that the selective inactivation of PI3KC2ß kinase activity is sufficient to fully prevent muscle atrophy and weakness, histopathology, and sarcomere and triad disorganization in Mtm1-knockout mice. This rescue correlates with normalization of PtdIns3P level and mTORC1 activity, a key regulator of protein synthesis and autophagy. Conversely, lack of PI3KC2ß kinase activity did not rescue the histopathology of the BIN1 autosomal CNM mouse model. Overall, these findings support the development of specific PI3KC2ß kinase inhibitors to cure myotubular myopathy.


Assuntos
Miopatias Congênitas Estruturais , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositóis , Mutação , Camundongos Knockout , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia
5.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674478

RESUMO

The Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is known to dephosphorylate PtdIns(3,4,5)P3 into PtdIns(3,4)P2 and to interact with several signaling proteins though its docking functions. It has been shown to negatively regulate platelet adhesion and spreading on a fibrinogen surface and to positively regulate thrombus growth. In the present study, we have investigated its role during the early phase of platelet activation. Using confocal-based morphometric analysis, we found that SHIP1 is involved in the regulation of cytoskeletal organization and internal contractile activity in thrombin-activated platelets. The absence of SHIP1 has no significant impact on thrombin-induced Akt or Erk1/2 activation, but it selectively affects the RhoA/Rho-kinase pathway and myosin IIA relocalization to the cytoskeleton. SHIP1 interacts with the spectrin-based membrane skeleton, and its absence induces a loss of sustained association of integrins to this network together with a decrease in αIIbß3 integrin clustering following thrombin stimulation. This αIIbß3 integrin dynamics requires the contractile cytoskeleton under the control of SHIP1. RhoA activation, internal platelet contraction, and membrane skeleton integrin association were insensitive to the inhibition of PtdIns(3,4,5)P3 synthesis or SHIP1 phosphatase activity, indicating a role for the docking properties of SHIP1 in these processes. Altogether, our data reveal a lipid-independent function for SHIP1 in the regulation of the contractile cytoskeleton and integrin dynamics in platelets.


Assuntos
Integrina alfa2 , Integrina beta3 , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Ativação Plaquetária , Plaquetas/metabolismo , Integrina beta3/metabolismo , Fosfatidilinositóis/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombina/farmacologia , Trombina/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Integrina alfa2/metabolismo
6.
Curr Top Microbiol Immunol ; 436: 69-93, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36243840

RESUMO

Highly conserved from yeast to mammals, vacuolar protein sorting 34 (Vps34) is the sole member of the third class of the phosphoinositide 3-kinase (PI3K) family. By producing phosphatidylinositol-3-monophosphate (PtdIns3P) through its scaffolding function essential for the catalytic lipid activity, Vps34 regulates endosomal trafficking, autophagy, phagocytosis, and nutrient-sensing signaling. The development of genetically modified mouse models and specific inhibitors has largely contributed over the past ten years to a better understanding of Vps34 functions in biological and physiological processes in mammals and, ultimately, its potential implications and targeting in human diseases. This chapter will summarize the current knowledge of the structure and regulation of Vps34 as well as its cellular and organismal functions.


Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Animais , Autofagia , Biologia , Endossomos/metabolismo , Humanos , Mamíferos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Saccharomyces cerevisiae
7.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955459

RESUMO

Obesity is associated with a pro-inflammatory and pro-thrombotic state that supports atherosclerosis progression and platelet hyper-reactivity. During the last decade, the platelet lipidome has been considered a treasure trove, as it is a source of biomarkers for preventing and treating different pathologies. The goal of the present study was to determine the lipid profile of platelets from non-diabetic, severely obese patients compared with their age- and sex-matched lean controls. Lipids from washed platelets were isolated and major phospholipids, sphingolipids and neutral lipids were analyzed either by gas chromatography or by liquid chromatography coupled to mass spectrometry. Despite a significant increase in obese patient's plasma triglycerides, there were no significant differences in the levels of triglycerides in platelets among the two groups. In contrast, total platelet cholesterol was significantly decreased in the obese group. The profiling of phospholipids showed that phosphatidylcholine and phosphatidylethanolamine contents were significantly reduced in platelets from obese patients. On the other hand, no significant differences were found in the sphingomyelin and ceramide levels, although there was also a tendency for reduced levels in the obese group. The outline of the glycerophospholipid and sphingolipid molecular species (fatty-acyl profiles) was similar in the two groups. In summary, these lipidomics data indicate that platelets from obese patients have a unique lipid fingerprint that may guide further studies and provide mechanistic-driven perspectives related to the hyperactivate state of platelets in obesity.


Assuntos
Lipidômica , Fosfolipídeos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Obesidade , Esfingolipídeos , Triglicerídeos
8.
Acta Neuropathol ; 144(3): 537-563, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35844027

RESUMO

X-linked myotubular myopathy (XLMTM) is a fatal neuromuscular disorder caused by loss of function mutations in MTM1. At present, there are no directed therapies for XLMTM, and incomplete understanding of disease pathomechanisms. To address these knowledge gaps, we performed a drug screen in mtm1 mutant zebrafish and identified four positive hits, including valproic acid, which functions as a potent suppressor of the mtm1 zebrafish phenotype via HDAC inhibition. We translated these findings to a mouse XLMTM model, and showed that valproic acid ameliorates the murine phenotype. These observations led us to interrogate the epigenome in Mtm1 knockout mice; we found increased DNA methylation, which is normalized with valproic acid, and likely mediated through aberrant 1-carbon metabolism. Finally, we made the unexpected observation that XLMTM patients share a distinct DNA methylation signature, suggesting that epigenetic alteration is a conserved disease feature amenable to therapeutic intervention.


Assuntos
Miopatias Congênitas Estruturais , Peixe-Zebra , Animais , Modelos Animais de Doenças , Epigênese Genética , Camundongos , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/tratamento farmacológico , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ácido Valproico/metabolismo , Ácido Valproico/farmacologia , Peixe-Zebra/metabolismo
9.
iScience ; 25(7): 104537, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35769882

RESUMO

The development of anti-infectives against a large range of AB-like toxin-producing bacteria includes the identification of compounds disrupting toxin transport through both the endolysosomal and retrograde pathways. Here, we performed a high-throughput screening of compounds blocking Rac1 proteasomal degradation triggered by the Cytotoxic Necrotizing Factor-1 (CNF1) toxin, which was followed by orthogonal screens against two toxins that hijack the endolysosomal (diphtheria toxin) or retrograde (Shiga-like toxin 1) pathways to intoxicate cells. This led to the identification of the molecule C910 that induces the enlargement of EEA1-positive early endosomes associated with sorting defects of CNF1 and Shiga toxins to their trafficking pathways. C910 protects cells against eight bacterial AB toxins and the CNF1-mediated pathogenic Escherichia coli invasion. Interestingly, C910 reduces influenza A H1N1 and SARS-CoV-2 viral infection in vitro. Moreover, parenteral administration of C910 to mice resulted in its accumulation in lung tissues and a reduction in lethal influenza infection.

10.
Arterioscler Thromb Vasc Biol ; 42(8): 987-1004, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708031

RESUMO

BACKGROUND: Secretory granules are key elements for platelet functions. Their biogenesis and integrity are regulated by fine-tuned mechanisms that need to be fully characterized. Here, we investigated the role of the phosphoinositide 5-kinase PIKfyve and its lipid products, PtdIns5P (phosphatidylinositol 5 monophosphate) and PtdIns(3,5)P2 (phosphatidylinositol (3,5) bisphosphate) in granule homeostasis in megakaryocytes and platelets. METHODS: For that, we invalidated PIKfyve by pharmacological inhibition or gene silencing in megakaryocytic cell models (human MEG-01 cell line, human imMKCLs, mouse primary megakaryocytes) and in human platelets. RESULTS: We unveiled that PIKfyve expression and its lipid product levels increased with megakaryocytic maturation. In megakaryocytes, PtdIns5P and PtdIns(3,5)P2 were found in alpha and dense granule membranes with higher levels in dense granules. Pharmacological inhibition or knock-down of PIKfyve in megakaryocytes decreased PtdIns5P and PtdIns(3,5)P2 synthesis and induced a vacuolar phenotype with a loss of alpha and dense granule identity. Permeant PtdIns5P and PtdIns(3,5)P2 and the cation channel TRPML (transient receptor potential mucolipin) 1 and TPC (two pore segment channel) 2 activation were able to accelerate alpha and dense granule integrity recovery following release of PIKfyve pharmacological inhibition. In platelets, PIKfyve inhibition specifically impaired the integrity of dense granules culminating in defects in their secretion, platelet aggregation, and thrombus formation. CONCLUSIONS: These data demonstrated that PIKfyve and its lipid products PtdIns5P and PtdIns(3,5)P2 control granule integrity both in megakaryocytes and platelets.


Assuntos
Megacariócitos , Fosfatidilinositol 3-Quinases , Fosfatidilinositóis , Animais , Plaquetas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Humanos , Megacariócitos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo
11.
Sci Rep ; 12(1): 6255, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428815

RESUMO

Bone marrow megakaryocytes (MKs) undergo a maturation involving contacts with the microenvironment before extending proplatelets through sinusoids to deliver platelets in the bloodstream. We demonstrated that MKs assemble linear F-actin-enriched podosomes on collagen I fibers. Microscopy analysis evidenced an inverse correlation between the number of dot-like versus linear podosomes over time. Confocal videomicroscopy confirmed that they derived from each-other. This dynamics was dependent on myosin IIA. Importantly, MKs progenitors expressed the Tks4/5 adaptors, displayed a strong gelatinolytic ability and did not form linear podosomes. While maturing, MKs lost Tks expression together with digestive ability. However, those MKs were still able to remodel the matrix by exerting traction on collagen I fibers through a collaboration between GPVI, ß1 integrin and linear podosomes. Our data demonstrated that a change in structure and composition of podosomes accounted for the shift of function during megakaryopoiesis. These data highlight the fact that members of the invadosome family could correspond to different maturation status of the same entity, to adapt to functional responses required by differentiation stages of the cell that bears them.


Assuntos
Megacariócitos , Podossomos , Plaquetas/metabolismo , Colágeno Tipo I/metabolismo , Megacariócitos/metabolismo , Trombopoese
12.
EMBO Rep ; 22(6): e51299, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33880878

RESUMO

Endothelium protection is critical, because of the impact of vascular leakage and edema on pathological conditions such as brain ischemia. Whereas deficiency of class II phosphoinositide 3-kinase alpha (PI3KC2α) results in an increase in vascular permeability, we uncover a crucial role of the beta isoform (PI3KC2ß) in the loss of endothelial barrier integrity following injury. Here, we studied the role of PI3KC2ß in endothelial permeability and endosomal trafficking in vitro and in vivo in ischemic stroke. Mice with inactive PI3KC2ß showed protection against vascular permeability, edema, cerebral infarction, and deleterious inflammatory response. Loss of PI3KC2ß in human cerebral microvascular endothelial cells stabilized homotypic cell-cell junctions by increasing Rab11-dependent VE-cadherin recycling. These results identify PI3KC2ß as a potential new therapeutic target to prevent aggravating lesions following ischemic stroke.


Assuntos
Células Endoteliais , Fosfatidilinositol 3-Quinases , Junções Aderentes/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653949

RESUMO

Charcot-Marie-Tooth type 4B1 (CMT4B1) is a severe autosomal recessive demyelinating neuropathy with childhood onset, caused by loss-of-function mutations in the myotubularin-related 2 (MTMR2) gene. MTMR2 is a ubiquitously expressed catalytically active 3-phosphatase, which in vitro dephosphorylates the 3-phosphoinositides PtdIns3P and PtdIns(3,5)P2, with a preference for PtdIns(3,5)P2 A hallmark of CMT4B1 neuropathy are redundant loops of myelin in the nerve termed myelin outfoldings, which can be considered the consequence of altered growth of myelinated fibers during postnatal development. How MTMR2 loss and the resulting imbalance of 3'-phosphoinositides cause CMT4B1 is unknown. Here we show that MTMR2 by regulating PtdIns(3,5)P2 levels coordinates mTORC1-dependent myelin synthesis and RhoA/myosin II-dependent cytoskeletal dynamics to promote myelin membrane expansion and longitudinal myelin growth. Consistent with this, pharmacological inhibition of PtdIns(3,5)P2 synthesis or mTORC1/RhoA signaling ameliorates CMT4B1 phenotypes. Our data reveal a crucial role for MTMR2-regulated lipid turnover to titrate mTORC1 and RhoA signaling thereby controlling myelin growth.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Bainha de Mielina/metabolismo , Fosfatos de Fosfatidilinositol/biossíntese , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Transdução de Sinais , Animais , Doença de Charcot-Marie-Tooth/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Bainha de Mielina/genética , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Fosfatos de Fosfatidilinositol/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
14.
Methods Mol Biol ; 2251: 39-53, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481230

RESUMO

Our knowledge of the role and biology of the different phosphoinositides has greatly expanded over recent years. Reversible phosphorylation by specific kinases and phosphatases of positions 3, 4, and 5 on the inositol ring is a highly dynamic process playing a critical role in the regulation of the spatiotemporal recruitment and binding of effector proteins. The specific phosphoinositide kinases and phosphatases are key players in the control of many cellular functions, including proliferation, survival, intracellular trafficking, or cytoskeleton reorganization. Several of these enzymes are mutated in human diseases. The impact of the fatty acid composition of phosphoinositides in their function is much less understood. There is an important molecular diversity in the fatty acid side chains of PI. While stearic and arachidonic fatty acids are the major acyl species in PIP, PIP2, and PIP3, other fatty acid combinations are also found. The role of these different molecular species is still unknown, but it is important to quantify these different molecules and their potential changes during cell stimulation to better characterize this emerging field. Here, we describe a sensitive high-performance liquid chromatography-mass spectrometry method that we used for the first time to profile the changes in phosphoinositide molecular species (summed fatty acyl chain profiles) in human and mouse platelets under resting conditions and following stimulation. This method can be applied to other hematopoietic primary cells isolated from human or experimental animal models.


Assuntos
Plaquetas/metabolismo , Fosfatidilinositóis/análise , Espectrometria de Massas em Tandem/métodos , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Fenômenos Bioquímicos , Linhagem Celular , Células Cultivadas , Cromatografia Líquida/métodos , Ácidos Graxos/metabolismo , Inositol/química , Camundongos , Fosfatidilinositol 3-Quinases/análise , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/análise , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais/fisiologia
15.
Methods Mol Biol ; 2251: 177-184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481239

RESUMO

Following their generation by lipid kinases and phosphatases, phosphoinositides regulate important biological processes such as cytoskeleton rearrangement, membrane remodeling/trafficking, and gene expression through the interaction of their phosphorylated inositol head group with a variety of protein domains such as PH, PX, and FYVE. Therefore, it is important to determine the specificity of phosphoinositides toward effector proteins to understand their impact on cellular physiology. Several methods have been developed to identify and characterize phosphoinositide effectors, and liposomes-based methods are preferred because the phosphoinositides are incorporated in a membrane, the composition of which can mimic cellular membranes. In this report, we describe the experimental setup for liposome flotation assay and a recently developed method called protein-lipid interaction by fluorescence (PLIF) for the characterization of phosphoinositide-binding specificities of proteins.


Assuntos
Lipossomos/análise , Fosfatidilinositóis/análise , Mapeamento de Interação de Proteínas/métodos , Membrana Celular/metabolismo , Humanos , Lipossomos/metabolismo , Fosfatidilinositóis/metabolismo , Fosforilação , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Proteínas/química , Transdução de Sinais/fisiologia
16.
Biochem J ; 477(22): 4327-4342, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33242335

RESUMO

Our knowledge on the expression, regulation and roles of the different phosphoinositide 3-kinases (PI3Ks) in platelet signaling and functions has greatly expanded these last twenty years. Much progress has been made in understanding the roles and regulations of class I PI3Ks which produce the lipid second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3). Selective pharmacological inhibitors and genetic approaches have allowed researchers to generate an impressive amount of data on the role of class I PI3Kα, ß, δ and γ in platelet activation and in thrombosis. Furthermore, platelets do also express two class II PI3Ks (PI3KC2α and PI3KC2ß), thought to generate PtdIns(3,4)P2 and PtdIns3P, and the sole class III PI3K (Vps34), known to synthesize PtdIns3P. Recent studies have started to reveal the importance of PI3KC2α and Vps34 in megakaryocytes and platelets, opening new perspective in our comprehension of platelet biology and thrombosis. In this review, we will summarize previous and recent advances on platelet PI3Ks isoforms. The implication of these kinases and their lipid products in fundamental platelet biological processes and thrombosis will be discussed. Finally, the relevance of developing potential antithrombotic strategies by targeting PI3Ks will be examined.


Assuntos
Plaquetas/enzimologia , Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Trombose/enzimologia , Trombose/terapia , Animais , Plaquetas/patologia , Humanos , Isoenzimas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Trombose/patologia
17.
J Biol Chem ; 295(46): 15767-15781, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32917725

RESUMO

Endocannabinoid signaling plays a regulatory role in various (neuro)biological functions. 2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid, and although its canonical biosynthetic pathway involving phosphoinositide-specific phospholipase C and diacylglycerol lipase α is known, alternative pathways remain unsettled. Here, we characterize a noncanonical pathway implicating glycerophosphodiesterase 3 (GDE3, from GDPD2 gene). Human GDE3 expressed in HEK293T cell membranes catalyzed the conversion of lysophosphatidylinositol (LPI) into monoacylglycerol and inositol-1-phosphate. The enzyme was equally active against 1-acyl and 2-acyl LPI. When using 2-acyl LPI, where arachidonic acid is the predominant fatty acid, LC-MS analysis identified 2-AG as the main product of LPI hydrolysis by GDE3. Furthermore, inositol-1-phosphate release into the medium occurred upon addition of LPI to intact cells, suggesting that GDE3 is actually an ecto-lysophospholipase C. In cells expressing G-protein-coupled receptor GPR55, GDE3 abolished 1-acyl LPI-induced signaling. In contrast, upon simultaneous ex-pression of GDE3 and cannabinoid receptor CB2, 2-acyl LPI evoked the same signal as that induced by 2-AG. These data strongly suggest that, in addition to degrading the GPR55 LPI ligand, GDE3 can act as a switch between GPR55 and CB2 signaling. Coincident with a major expression of both GDE3 and CB2 in the spleen, spleens from transgenic mice lacking GDE3 displayed doubling of LPI content compared with WT mice. Decreased production of 2-AG in whole spleen was also observed, supporting the in vivo relevance of our findings. These data thus open a new research avenue in the field of endocannabinoid generation and reinforce the view of GPR55 and LPI being genuine actors of the endocannabinoid system.


Assuntos
Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Ácidos Araquidônicos/análise , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Endocanabinoides/análise , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Feminino , Glicerídeos/análise , Glicerídeos/metabolismo , Glicerídeos/farmacologia , Células HEK293 , Humanos , Hidrólise , Fosfatos de Inositol/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoglicerídeos/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/deficiência , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Alinhamento de Sequência , Transdução de Sinais/efeitos dos fármacos , Baço/metabolismo
19.
Sci Transl Med ; 12(553)2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32718993

RESUMO

Arterial thrombosis causes heart attacks and most strokes and is the most common cause of death in the world. Platelets are the cells that form arterial thrombi, and antiplatelet drugs are the mainstay of heart attack and stroke prevention. Yet, current drugs have limited efficacy, preventing fewer than 25% of lethal cardiovascular events without clinically relevant effects on bleeding. The key limitation on the ability of all current drugs to impair thrombosis without causing bleeding is that they block global platelet activation, thereby indiscriminately preventing platelet function in hemostasis and thrombosis. Here, we identify an approach with the potential to overcome this limitation by preventing platelet function independently of canonical platelet activation and in a manner that appears specifically relevant in the setting of thrombosis. Genetic or pharmacological targeting of the class II phosphoinositide 3-kinase (PI3KC2α) dilates the internal membrane reserve of platelets but does not affect activation-dependent platelet function in standard tests. Despite this, inhibition of PI3KC2α is potently antithrombotic in human blood ex vivo and mice in vivo and does not affect hemostasis. Mechanistic studies reveal this antithrombotic effect to be the result of impaired platelet adhesion driven by pronounced hemodynamic shear stress gradients. These findings demonstrate an important role for PI3KC2α in regulating platelet structure and function via a membrane-dependent mechanism and suggest that drugs targeting the platelet internal membrane may be a suitable approach for antithrombotic therapies with an improved therapeutic window.


Assuntos
Plaquetas , Trombose , Animais , Hemostasia , Camundongos , Fosfatidilinositol 3-Quinases , Ativação Plaquetária , Agregação Plaquetária , Trombose/tratamento farmacológico
20.
Adv Biol Regul ; 75: 100664, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31604685

RESUMO

Blood platelets, produced by the fragmentation of megakaryocytes, play a key role in hemostasis and thrombosis. Being implicated in atherothrombosis and other thromboembolic disorders, they represent a major therapeutic target for antithrombotic drug development. Several recent studies have highlighted an important role for the lipid phosphatidylinositol 3 monophosphate (PtdIns3P) in megakaryocytes and platelets. PtdIns3P, present in small amounts in mammalian cells, is involved in the control of endocytic trafficking and autophagy. Its metabolism is finely regulated by specific kinases and phosphatases. Class II (α, ß and γ) and III (Vps34) phosphoinositide-3-kinases (PI3Ks), INPP4 and Fig4 are involved in the production of PtdIns3P whereas PIKFyve, myotubularins (MTMs) and type II PIPK metabolize PtdIns3P. By regulating the turnover of different pools of PtdIns3P, class II (PI3KC2α) and class III (Vps34) PI3Ks have been recently involved in the regulation of platelet production and functions. These pools of PtdIns3P appear to modulate membrane organization and intracellular trafficking. Moreover, PIKFyve and INPP4 have been recently implicated in arterial thrombosis. In this review, we will discuss the role of PtdIns3P metabolizing enzymes in platelet production and function. Potential new anti-thrombotic therapeutic perspectives based on inhibitors targeting specifically PtdIns3P metabolizing enzymes will also be commented.


Assuntos
Plaquetas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais , Trombopoese , Trombose/metabolismo , Animais , Plaquetas/patologia , Humanos , Transporte Proteico , Trombose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...