Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(21): 9747-9756, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34019612

RESUMO

Despite the broad relevance of copper nanoparticles in industrial applications, the fundamental understanding of oxidation and reduction of copper at the nanoscale is still a matter of debate and remains within the realm of bulk or thin film-based systems. Moreover, the reported studies on nanoparticles vary widely in terms of experimental parameters and are predominantly carried out using either ex situ observation or environmental transmission electron microscopy in a gaseous atmosphere at low pressure. Hence, dedicated studies in regards to the morphological transformations and structural transitions of copper-based nanoparticles at a wider range of temperatures and under industrially relevant pressure would provide valuable insights to improve the application-specific material design. In this paper, copper nanoparticles are studied using in situ Scanning Transmission Electron Microscopy to discern the transformation of the nanoparticles induced by oxidative and reductive environments at high temperatures. The nanoparticles were subjected to a temperature of 150 °C to 900 °C at 0.5 atm partial pressure of the reactive gas, which resulted in different modes of copper mobility both within the individual nanoparticles and on the surface of the support. Oxidation at an incremental temperature revealed the dependency of the nanoparticles' morphological evolution on their initial size as well as reaction temperature. After the formation of an initial thin layer of oxide, the nanoparticles evolved to form hollow oxide shells. The kinetics of formation of hollow particles were simulated using a reaction-diffusion model to determine the activation energy of diffusion and temperature-dependent diffusion coefficient of copper in copper oxide. Upon further temperature increase, the hollow shell collapsed to form compact and facetted nanoparticles. Reduction of copper oxide was carried out at different temperatures starting from various oxide phase morphologies. A reduction mechanism is proposed based on the dynamic of the reduction-induced fragmentation of the oxide phase. In a broader perspective, this study offers insights into the mobility of the copper phase during its oxidation-reduction process in terms of microstructural evolution as a function of nanoparticle size, reaction gas, and temperature.

2.
Phys Chem Chem Phys ; 21(16): 8569-8579, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30964139

RESUMO

Recent technologies such as those using coal, natural gas or biomass as fuel are often facing the challenge of removing H2S impurities. Among the various existing routes for sulfur removal, the conversion of transition metal oxides into sulfides is often considered for deep gas purification. The ideal regenerative system, preventing waste generation, should combine a high affinity material towards H2S and an easy way for its regeneration into the initial oxide form. The present paper describes the reactivity of the ZnMoO4 mixed oxide material and ZnO-MoO3 oxides mixture as potential candidates for the regenerative H2S sorption process. The use of the QXAS technique allowed us to get time resolved information about both sulfidation and oxidative regeneration processes at Mo and Zn K-edges. Faced with the complexity of gas-solid reactions involving several phases, QXAS in combination with multivariate data analysis enabled us to follow the sulfidation and oxidative regeneration kinetics of both materials, with a description of the evolution of several intermediate phases. Both Mo and Zn K-edge spectroscopic data were analyzed and comparison of the evolution of ternary oxides containing the two elements proved to be an effective way for validating the results.

3.
Phys Chem Chem Phys ; 15(5): 1532-45, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23238352

RESUMO

Zinc oxide based materials are commonly used for the final desulfurization of synthesis gas in Fischer-Tropsch based XTL processes. Although the ZnO sulfidation reaction has been widely studied, little is known about the transformation at the crystal scale, its detailed mechanism and kinetics. A model ZnO material with well-determined characteristics (particle size and shape) has been synthesized to perform this study. Characterizations of sulfided samples (using XRD, TEM and electron diffraction) have shown the formation of oriented polycrystalline ZnS nanoparticles with a predominant hexagonal form (wurtzite phase). TEM observations also have evidenced an outward development of the ZnS phase, showing zinc and oxygen diffusion from the ZnO-ZnS internal interface to the surface of the ZnS particle. The kinetics of ZnO sulfidation by H(2)S has been investigated using isothermal and isobaric thermogravimetry. Kinetic tests have been performed that show that nucleation of ZnS is instantaneous compared to the growth process. A reaction mechanism composed of eight elementary steps has been proposed to account for these results, and various possible rate laws have been determined upon approximation of the rate-determining step. Thermogravimetry experiments performed in a wide range of H(2)S and H(2)O partial pressures have shown that the ZnO sulfidation reaction rate has a nonlinear variation with H(2)S partial pressure at the same time no significant influence of water vapor on reaction kinetics has been observed. From these observations, a mixed kinetics of external interface reaction with water desorption and oxygen diffusion has been determined to control the reaction kinetics and the proposed mechanism has been validated. However, the formation of voids at the ZnO-ZnS internal interface, characterized by TEM and electron tomography, strongly slows down the reaction rate. Therefore, the impact of the decreasing ZnO-ZnS internal interface on reaction kinetics has been taken into account in the reaction rate expression. In this way the void formation at the interface has been modeled considering a random nucleation followed by an isotropic growth of cavities. Very good agreement has been observed between both experimental and calculated rates after taking into account the decrease in the ZnO-ZnS internal interface.


Assuntos
Modelos Químicos , Sulfetos/química , Compostos de Zinco/química , Óxido de Zinco/química , Cinética , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Pressão , Termogravimetria , Água/química , Óxido de Zinco/síntese química
4.
Phys Chem Chem Phys ; 13(13): 6241-8, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21365095

RESUMO

Polyols were successfully used as size and shape controllers of oxide nanoparticles synthesized by soft chemistry in aqueous solution. The efficiency of acyclic polyols as a complexing agent depends obviously on the number of OH groups bonded to the carbon chain (and thus on the carbon chain length), but also on their stereochemistry. This innovating way to control morphology has been experienced for the synthesis of boehmite nanoparticles, whose morphology variations related to xylitol adsorption (C5 alditol) have been previously reported. The use of polyols during synthesis causes a modification of the usual morphologies observed, specifically resulting in an increase of (101) faces area. It is evidenced here that the variations of the nanoparticle aspect ratio are related to polyol complexing ability, and more specifically to molecule topology and configuration. Indeed, the morphology variations increase as a function of polyol carbon chain length and number of hydroxyl groups, and is much pronounced for stereoisomers exhibiting hydroxyl groups all oriented on the same side of the molecule (threo-threo sequences). Thanks to these various polyols used, we showed how the progressive levels of complexing ability allow us to tune boehmite particle size and shape. Material characterizations were performed using relevant methods such as X-ray diffraction powder pattern simulation and zetametry in addition to transmission electron microscopy. Since γ-alumina is obtained from boehmite by a topotactic transformation, we expect that this method will provide a promising way to control surface properties of γ-alumina, an important industrial catalyst support.

5.
Phys Chem Chem Phys ; 11(47): 11310-23, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20024400

RESUMO

The ability to design nanoparticles size and shape through the addition of simple and commercially available organic molecules is of particular interest in the catalytic domain because huge amounts of very fine powders are needed. The origin of this effect is all the more difficult to elucidate because the involved interactions are weak. In this paper, we have investigated the shaping of boehmite AlO(OH) nanoparticles in the presence of polyols like xylitol (C(5) alditol) by a combined experimental and theoretical approach. Experimental techniques such as XRD, TEM, IEP measurements, adsorption isotherms measurements, and (13)C MAS NMR experiments demonstrate that the effect of xylitol has a thermodynamic origin and suggest weak interactions between xylitol and the surface. Furthermore, the strongest proportion of lateral faces ((100), (001), and (101)) that of basal face would be in agreement with a preferential adsorption upon lateral surfaces. These results were refined by a computational approach. DFT calculations of surface energies (taking into account temperature and solvation effects) and of NMR shielding constants corroborate that molecular adsorption mode is preferred over all adsorption modes involving exchanges with surface OH groups. The preferred adsorption on lateral surfaces is attributed to the nest effect induced by hydroxyl groups localized on the concavities of the (001) and (101) surfaces, able to stabilize the xylitol molecule by hydrogen-bonding, whereas the basal (010) surface is almost flat. This combined experimental and computational approach thus provides interesting rationalization for the morphology effects observed.

6.
J Am Chem Soc ; 129(18): 5904-9, 2007 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-17429969

RESUMO

TiO2 rutile nanorods of average length L = 160 +/- 40 nm and average diameter D = 15 +/- 5 nm have been synthesized through a seed-mediated growth process by TiCl4 hydrolysis in concentrated acidic solution. These nanorods were dispersed in water to yield stable (aggregation-free) colloidal aqueous suspensions. At volume fractions phi > 3%, the suspensions spontaneously display a phase separation into an isotropic liquid phase and a liquid-crystalline phase identified as nematic by X-ray scattering. At phi > 12%, the suspensions form a nematic single phase, with large order parameter, S = 0.75 +/- 0.05. Very well aligned rutile films on glass substrate were produced by spin-coating, and their photocatalytic properties were examined by monitoring the decomposition of methylene blue under UV light. We found that UV-light polarized along the quadratic axis of the rutile nanorods was most efficient for this photocatalytic reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...