Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 6(7): e2323405, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37450302

RESUMO

Importance: Longitudinal data on COVID-19 messenger RNA (mRNA) vaccine reactogenicity and immunogenicity in pregnancy and for the mother-infant dyad are needed. Objective: To examine COVID-19 mRNA vaccine reactogenicity and immunogenicity in pregnancy and observe longitudinal maternal and infant outcomes. Design, Setting, and Participants: This prospective cohort study of pregnant individuals enrolled in the COVID-19 Vaccination in Pregnancy and Lactation study from December 1, 2020, through December 31, 2021, with follow-up through March 31, 2022, was conducted at a large academic medical center in an urban metropolitan area in California. Pregnant individuals receiving COVID-19 mRNA vaccines (mRNA-1273 [Moderna] and BNT162b2 [Pfizer-BioNTech]) were eligible. Of 81 participants enrolled, 5 were excluded after enrollment: 1 terminated pregnancy, 1 received the third vaccine dose prior to delivery, and 3 delivered prior to completing the initial vaccine series. Exposure: COVID-19 mRNA vaccination at any time during pregnancy. Main Outcomes and Measures: The primary outcomes were vaccine response as measured by blood Immunoglobulin G (IgG) titers after each vaccine dose and self-reported postvaccination symptoms. Patients' IgG titers were measured in cord blood and in infant blood at intervals up to 1 year of life; IgG and IgA titers were measured in maternal milk. Clinical outcomes were collected from medical records. Results: Of 76 pregnant individuals included in final analyses (median [IQR] maternal age, 35 [29-41] years; 51 [67.1%] White; 28 [36.8%] primigravid; 37 [48.7%] nulliparous), 42 (55.3%) received BNT162b2 and 34 (44.7%) received mRNA-1237. There were no significant differences in maternal characteristics between the 2 vaccine groups. Systemic symptoms were more common after receipt of the second vaccine dose than after the first dose (42 of 59 [71.2%] vs 26 of 59 [44.1%]; P = .007) and after mRNA-1237 than after BNT162b2 (25 of 27 [92.6%] vs 17 of 32 53.1%; P = .001). Systemic symptoms were associated with 65.6% higher median IgG titers than no symptoms after the second vaccine dose (median [IQR], 2596 [1840-4455] vs 1568 [1114-4518] RFU; P = .007); mean cord titers in individuals with local or systemic symptoms were 6.3-fold higher than in individuals without symptoms. Vaccination in all trimesters elicited a robust maternal IgG response. The IgG transfer ratio was highest among individuals vaccinated in the second trimester. Anti-SARS-CoV-2 IgG was detectable in cord blood regardless of vaccination trimester. In milk, IgG and IgA titers remained above the positive cutoff for at least 5-6 months after birth, and infants of mothers vaccinated in the second and third trimesters had positive IgG titers for at least 5 to 6 months of life. There were no vaccine-attributable adverse perinatal outcomes. Conclusions and Relevance: The findings of this cohort study suggest that mRNA COVID-19 vaccination in pregnancy provokes a robust IgG response for the mother-infant dyad for approximately 6 months after birth. Postvaccination symptoms may indicate a more robust immune response, without adverse maternal, fetal, or neonatal outcomes.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Feminino , Recém-Nascido , Gravidez , Lactente , Humanos , Adulto , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , Mães , Estudos de Coortes , Estudos Prospectivos , COVID-19/prevenção & controle , Vacinação/efeitos adversos , Imunoglobulina A , Imunoglobulina G
2.
Nat Commun ; 13(1): 4422, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908075

RESUMO

Studies are needed to evaluate the safety and effectiveness of mRNA SARS-CoV-2 vaccination during pregnancy, and the levels of protection provided to their newborns through placental transfer of antibodies. Here, we evaluate the transplacental transfer of mRNA vaccine products and functional anti-SARS-CoV-2 antibodies during pregnancy and early infancy in a cohort of 20 individuals vaccinated during late pregnancy. We find no evidence of mRNA vaccine products in maternal blood, placenta tissue, or cord blood at delivery. However, we find time-dependent efficient transfer of IgG and neutralizing antibodies to the neonate that persists during early infancy. Additionally, using phage immunoprecipitation sequencing, we find a vaccine-specific signature of SARS-CoV-2 Spike protein epitope binding that is transplacentally transferred during pregnancy. Timing of vaccination during pregnancy is critical to ensure transplacental transfer of protective antibodies during early infancy.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Feminino , Humanos , Imunoglobulina G , Recém-Nascido , Placenta , Gravidez , RNA Mensageiro , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Vacinas Sintéticas , Vacinas de mRNA
3.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35579965

RESUMO

Pregnancy confers unique immune responses to infection and vaccination across gestation. To date, there are limited data comparing vaccine- and infection-induced neutralizing Abs (nAbs) against COVID-19 variants in mothers during pregnancy. We analyzed paired maternal and cord plasma samples from 60 pregnant individuals. Thirty women vaccinated with mRNA vaccines (from December 2020 through August 2021) were matched with 30 naturally infected women (from March 2020 through January 2021) by gestational age of exposure. Neutralization activity against the 5 SARS-CoV-2 spike sequences was measured by a SARS-CoV-2-pseudotyped spike virion assay. Effective nAbs against SARS-CoV-2 were present in maternal and cord plasma after both infection and vaccination. Compared with WT spike protein, these nAbs were less effective against the Delta and Mu spike variants. Vaccination during the third trimester induced higher cord-nAb levels at delivery than did infection during the third trimester. In contrast, vaccine-induced nAb levels were lower at the time of delivery compared with infection during the first trimester. The transfer ratio (cord nAb level divided by maternal nAb level) was greatest in mothers vaccinated in the second trimester. SARS-CoV-2 vaccination or infection in pregnancy elicits effective nAbs with differing neutralization kinetics that are influenced by gestational time of exposure.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Feminino , Idade Gestacional , Humanos , Mães , Testes de Neutralização , Vacinação
4.
Res Sq ; 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34931183

RESUMO

Studies are needed to evaluate the safety and effectiveness of mRNA SARS-CoV-2 vaccination during pregnancy, and the levels of protection provided to their newborns through placental transfer of antibodies. We evaluated the transplacental transfer of mRNA vaccine products and functional anti-SARS-CoV-2 antibodies during pregnancy and early infancy in a cohort of 20 individuals vaccinated during pregnancy. We found no evidence of mRNA vaccine products in maternal blood, placenta tissue, or cord blood at delivery. However, we found time-dependent efficient transfer of IgG and neutralizing antibodies to the neonate that persisted during early infancy. Additionally, using phage immunoprecipitation sequencing, we found a vaccine-specific signature of SARS-CoV-2 Spike protein epitope binding that is transplacentally transferred during pregnancy. In conclusion, products of mRNA vaccines are not transferred to the fetus during pregnancy, however timing of vaccination during pregnancy is critical to ensure transplacental transfer of protective antibodies during early infancy.

5.
medRxiv ; 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34931197

RESUMO

Studies are needed to evaluate the safety and effectiveness of mRNA SARS-CoV-2 vaccination during pregnancy, and the levels of protection provided to their newborns through placental transfer of antibodies. We evaluated the transplacental transfer of mRNA vaccine products and functional anti-SARS-CoV-2 antibodies during pregnancy and early infancy in a cohort of 20 individuals vaccinated during pregnancy. We found no evidence of mRNA vaccine products in maternal blood, placenta tissue, or cord blood at delivery. However, we found time-dependent efficient transfer of IgG and neutralizing antibodies to the neonate that persisted during early infancy. Additionally, using phage immunoprecipitation sequencing, we found a vaccine-specific signature of SARS-CoV-2 Spike protein epitope binding that is transplacentally transferred during pregnancy. In conclusion, products of mRNA vaccines are not transferred to the fetus during pregnancy, however timing of vaccination during pregnancy is critical to ensure transplacental transfer of protective antibodies during early infancy.

6.
Front Immunol ; 12: 777103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804068

RESUMO

Background: Data regarding symptoms in the lactating mother-infant dyad and their immune response to COVID-19 mRNA vaccination during lactation are needed to inform vaccination guidelines. Methods: From a prospective cohort of 50 lactating individuals who received mRNA-based vaccines for COVID-19 (mRNA-1273 and BNT162b2), blood and milk samples were collected prior to first vaccination dose, immediately prior to 2nd dose, and 4-10 weeks after 2nd dose. Symptoms in mother and infant were assessed by detailed questionnaires. Anti-SARS-CoV-2 antibody levels in blood and milk were measured by Pylon 3D automated immunoassay and ELISA. In addition, vaccine-related PEGylated proteins in milk were measured by ELISA. Blood samples were collected from a subset of infants whose mothers received the vaccine during lactation (4-15 weeks after mothers' 2nd dose). Results: No severe maternal or infant adverse events were reported in this cohort. Two mothers and two infants were diagnosed with COVID-19 during the study period before achieving full immune response. PEGylated proteins were not found at significant levels in milk after vaccination. After vaccination, levels of anti-SARS-CoV-2 IgG and IgM significantly increased in maternal plasma and there was significant transfer of anti-SARS-CoV-2-Receptor Binding Domain (anti-RBD) IgA and IgG antibodies to milk. Milk IgA levels after the 2nd dose were negatively associated with infant age. Anti-SARS-CoV-2 IgG antibodies were not detected in the plasma of infants whose mothers were vaccinated during lactation. Conclusions: COVID-19 mRNA vaccines generate robust immune responses in plasma and milk of lactating individuals without severe adverse events reported.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/administração & dosagem , Lactação/imunologia , Leite Humano/imunologia , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Anticorpos Antivirais/sangue , Vacina BNT162 , COVID-19/prevenção & controle , Feminino , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade
7.
Reprod Toxicol ; 96: 102-113, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32544423

RESUMO

The use of genomic approaches in toxicological studies has greatly increased our ability to define the molecular profiles of environmental chemicals associated with developmental neurotoxicity (DNT). Integration of these approaches with adverse outcome pathways (AOPs), a framework that translates environmental exposures to adverse developmental phenotypes, can potentially inform DNT testing strategies. Here, using retinoic acid (RA) as a case example, we demonstrate that the integration of toxicogenomic profiles into the AOP framework can be used to establish a paradigm for chemical testing. RA is a critical regulatory signaling molecule involved in multiple aspects of mammalian central nervous system (CNS) development, including hindbrain formation/patterning and neuronal differentiation, and imbalances in RA signaling pathways are linked with DNT. While the mechanisms remain unresolved, environmental chemicals can cause DNT by disrupting the RA signaling pathway. First, we reviewed literature evidence of RA and other retinoid exposures and DNT to define a provisional AOP related to imbalances in RA embryonic bioavailability and hindbrain development. Next, by integrating toxicogenomic datasets, we defined a relevant transcriptomic signature associated with RA-induced developmental neurotoxicity (RA-DNT) in human and rodent models that was tested against zebrafish model data, demonstrating potential for integration into an AOP framework. Finally, we demonstrated how these approaches may be systematically utilized to identify chemical hazards by testing the RA-DNT signature against azoles, a proposed class of compounds that alters RA-signaling. The provisional AOP from this study can be expanded in the future to better define DNT biomarkers relevant to RA signaling and toxicity.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Síndromes Neurotóxicas , Retinoides/toxicidade , Rotas de Resultados Adversos , Animais , Humanos , Síndromes Neurotóxicas/genética , Testes de Toxicidade/métodos , Toxicogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...