Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370807

RESUMO

Opioid use disorder occurs alongside impaired risk-related decision-making, but the underlying neural correlates are unclear. We developed a novel approach-avoidance conflict model using a modified conditioned place preference paradigm to study neural signals of risky opioid seeking in the prefrontal cortex, a region implicated in executive decision making. Upon establishment of morphine conditioned place preference, rats underwent a subsequent conflict test in which fear-inducing cat odor was introduced in the previously drug-paired side of the apparatus. While the saline control group avoided the cat odor side, the morphine group maintained preference for the paired side despite the presence of cat odor. K-means clustering identified two subsets of morphine-treated rats that exhibited either persistent drug seeking (Risk-Takers) or increased avoidance (Risk-Avoiders) during conflict. Single-unit recordings from the prelimbic cortex (PL) revealed decreased neuronal firing rates upon acute morphine exposure in both Risk-Takers and Risk-Avoiders, but this firing rate suppression was absent after repeated administration. Risk-Avoiders also displayed distinct post-morphine excitation in PL which persisted across conditioning. During the preference test, subpopulations of PL neurons in all groups were either excited or inhibited when rats entered the paired side. Interestingly, while this inhibitory signal was lost during the subsequent conflict test in both saline and Risk-Avoider groups, these inhibitory responses persisted in Risk-Takers. Our results suggest that loss of PL inhibition after opioid conditioning is associated with the formation of contextual reward memory. Furthermore, persistent PL inhibitory signaling in the drug-associated context during conflict may underlie increased risk taking following opioid exposure.

2.
Brain Behav Immun ; 108: 45-54, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427806

RESUMO

Cancer-related fatigue is defined as a distressing persistent subjective sense of physical, emotional, and/or cognitive tiredness or exhaustion related to cancer or cancer treatment that is not proportional to recent activity and that interferes with usual functioning. This form of fatigue is highly prevalent during cancer treatment and in some patients, it can persist for years after treatment has ended. An understanding of the mechanisms that drive cancer-related fatigue is still lacking, which hampers the identification of effective treatment options. Various chemotherapeutic agents including cisplatin are known to induce mitochondrial dysfunction and this effect is known to mediate chemotherapy-induced peripheral neuropathy and cognitive dysfunction. Mitochondrial dysfunction results in the release of mitokines that act locally and at distance to promote metabolic and behavioral adjustments to this form of cellular stress. One of these mitokines, growth differentiation factor 15 (GDF15) and its receptor, glial cell line-derived neurotrophic factor family receptor α-like (GFRAL), have received special attention in oncology as activation of GFRAL mediates the anorexic response that is responsible for cancer anorexia. The present study was initiated to determine whether GDF15 and GFRAL are involved in cisplatin-induced fatigue. We first tested the ability of cisplatin to increase circulating GDF15 in mice before assessing whether GDF15 can induce behavioral fatigue measured by decreased wheel running in healthy mice and increase behavioral fatigue induced by cisplatin. Mice administered a long acting form of GDF15, mGDF15-fc, decreased their voluntary wheel running activity. When the same treatment was administered to mice receiving cisplatin, it increased the amplitude and duration of cisplatin-induced decrease in wheel running. To determine whether endogenous GDF15 mediates the behavioral fatigue induced by cisplatin, we then administered a neutralizing monoclonal antibody to GFRAL to mice injected with cisplatin. The GFRAL neutralizing antibody mostly prevented cisplatin-induced decrease in wheel running and accelerated recovery. Taken together these findings demonstrate for the first time the role of the GDF15/GFRAL axis in cisplatin-induced behaviors and indicate that this axis could be a promising therapeutic target for the treatment of cancer-related fatigue.


Assuntos
Antineoplásicos , Fadiga , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fator 15 de Diferenciação de Crescimento , Animais , Camundongos , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Fator 15 de Diferenciação de Crescimento/metabolismo , Atividade Motora , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fadiga/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...