Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(33): 38056-38066, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35943382

RESUMO

Conjugated polymers with narrow band gaps are particularly useful for sorting and discriminating semiconducting single-walled carbon nanotubes (s-SWCNT) due to the low charge carrier injection barrier for transport. In this paper, we report two newly synthesized narrow-band-gap conjugated polymers (PNDITEG-TVT and PNDIC8TEG-TVT) based on naphthalene diimide (NDI) and thienylennevinylene (TVT) building blocks, decorated with different polar side chains that can be used for dispersing and discriminating s-SWCNT. Compared with the mid-band-gap conjugated polymer PNDITEG-AH, which is composed of naphthalene diimide (NDI) and head-to-head bithiophene building blocks, the addition of a vinylene linker eliminates the steric congestion present in head-to-head bithiophene, which promotes backbone planarity, extending the π-conjugation length and narrowing the band gap. Cyclic voltammetry (CV) and density functional theory (DFT) calculations suggest that inserting a vinylene group in a head-to-head bithiophene efficiently lifts the highest occupied molecular orbital (HOMO) level (-5.60 eV for PNDITEG-AH, -5.02 eV for PNDITEG-TVT, and -5.09 eV for PNDIC8TEG-TVT). All three polymers are able to select for s-SWCNT, as evidenced by the sharp transitions in the absorption spectra. Field-effect transistors (FETs) fabricated with the polymer:SWCNT inks display p-dominant properties, with higher hole mobilities when using the NDI-TVT polymers as compared with PNDITEG-AH (0.6 cm2 V-1 s-1 for HiPCO:PNDITEG-AH, 1.5 cm2 V-1 s-1 for HiPCO:PNDITEG-TVT, and 2.3 cm2 V-1 s-1 for HiPCO:PNDIC8TEG-TVT). This improvement is due to the better alignment of the HOMO level of PNDITEG-TVT and PNDIC8TEG-TVT with that of the dominant SWCNT specie.

2.
Phys Chem Chem Phys ; 24(22): 13763-13772, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612289

RESUMO

In recent years, the dielectric constant (εr) of organic semiconductors (OSCs) has been of interest in the organic photovoltaic (OPV) community due to its potential influence on the exciton binding energy. Despite progress in the design of high εr OSCs and the accurate measurement of the εr, the effects of the synthetic strategies on specific (opto)electronic properties of the OSCs remain uncertain. In this contribution, the effects of εr on the optical properties of five new C70 derivatives and [70]PCBM are investigated. Together with [70]PCBM, the derivatives have a range of εr values that depend on the polarity and length of the side chains. The properties of the singlet excitons are investigated in detail with steady-state and time-resolved spectroscopy and the exciton diffusion length is measured. All six derivatives show similar photophysical properties in the neat films. However, large differences in the crystallinity of the fullerene films influence the exciton dynamics in blend films. This work shows that design principles for OSCs with a higher εr can have a very different influence on the performance of traditional BHJ devices and in neat films and it is important to consider the neat film properties when investigating the optoelectronic properties of new materials for OPV.

3.
ACS Phys Chem Au ; 2(3): 179-190, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35637782

RESUMO

This paper describes a simple model for comparing the degree of electronic coupling between molecules and electrodes across different large-area molecular junctions. The resulting coupling parameter can be obtained directly from current-voltage data or extracted from published data without fitting. We demonstrate the generalizability of this model by comparing over 40 different junctions comprising different molecules and measured by different laboratories. The results agree with existing models, reflect differences in mechanisms of charge transport and rectification, and are predictive in cases where experimental limitations preclude more sophisticated modeling. We also synthesized a series of conjugated molecular wires, in which embedded dipoles are varied systematically and at both molecule-electrode interfaces. The resulting current-voltage characteristics vary in nonintuitive ways that are not captured by existing models, but which produce trends using our simple model, providing insights that are otherwise difficult or impossible to explain. The utility of our model is its demonstrative generalizability, which is why simple observables like tunneling decay coefficients remain so widely used in molecular electronics despite the existence of much more sophisticated models. Our model is complementary, giving insights into molecule-electrode coupling across series of molecules that can guide synthetic chemists in the design of new molecular motifs, particularly in the context of devices comprising large-area molecular junctions.

4.
RSC Adv ; 12(14): 8783-8791, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35424820

RESUMO

This paper describes the use of reduced graphene oxide decorated with gold nanoparticles as an efficient electron transfer layer for solid-state biophotovoltic cells containing photosystem I as the sole photo-active component. Together with polytyrosine-polyaniline as a hole transfer layer, this device architecture results in an open-circuit voltage of 0.3 V, a fill factor of 38% and a short-circuit current density of 5.6 mA cm-2 demonstrating good coupling between photosystem I and the electrodes. The best-performing device reached an external power conversion efficiency of 0.64%, the highest for any solid-state photosystem I-based photovoltaic device that has been reported to date. Our results demonstrate that the functionality of photosystem I in the non-natural environment of solid-state biophotovoltaic cells can be improved through the modification of electrodes with efficient charge-transfer layers. The combination of reduced graphene oxide with gold nanoparticles caused tailoring of the electronic structure and alignment of the energy levels while also increasing electrical conductivity. The decoration of graphene electrodes with gold nanoparticles is a generalizable approach for enhancing charge-transfer across interfaces, particularly when adjusting the levels of the active layer is not feasible, as is the case for photosystem I and other biological molecules.

5.
Nat Commun ; 13(1): 2312, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484124

RESUMO

This paper describes the fabrication of digital logic circuits comprising resistors and diodes made from protein complexes and wired together using printed liquid metal electrodes. These resistors and diodes exhibit temperature-independent charge-transport over a distance of approximately 10 nm and require no encapsulation or special handling. The function of the protein complexes is determined entirely by self-assembly. When induced to self-assembly into anisotropic monolayers, the collective action of the aligned dipole moments increases the electrical conductivity of the ensemble in one direction and decreases it in the other. When induced to self-assemble into isotropic monolayers, the dipole moments are randomized and the electrical conductivity is approximately equal in both directions. We demonstrate the robustness and utility of these all-protein logic circuits by constructing pulse modulators based on AND and OR logic gates that function nearly identically to simulated circuits. These results show that digital circuits with useful functionality can be derived from readily obtainable biomolecules using simple, straightforward fabrication techniques that exploit molecular self-assembly, realizing one of the primary goals of molecular electronics.


Assuntos
Eletrônica , Lógica , Anisotropia , Condutividade Elétrica , Eletrodos
6.
Adv Mater ; 34(20): e2200393, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35334499

RESUMO

Organic mixed ionic-electronic conductors (OMIECs) are central to bioelectronic applications such as biosensors, health-monitoring devices, and neural interfaces, and have facilitated efficient next-generation brain-inspired computing and biohybrid systems. Despite these examples, smart and adaptive circuits that can locally process and optimize biosignals have not yet been realized. Here, a tunable sensing circuit is shown that can locally modulate biologically relevant signals like electromyograms (EMGs) and electrocardiograms (ECGs), that is based on a complementary logic inverter combined with a neuromorphic memory element, and that is constructed from a single polymer mixed conductor. It is demonstrated that a small neuromorphic array based on this material effects high classification accuracy in heartbeat anomaly detection. This high-performance material allows for straightforward monolithic integration, which reduces fabrication complexity while also achieving high on/off ratios with excellent ambient p- and n-type stability in transistor performance. This material opens a route toward simple and straightforward fabrication and integration of more sophisticated adaptive circuits for future smart bioelectronics.


Assuntos
Técnicas Biossensoriais , Transistores Eletrônicos , Eletrônica , Íons , Polímeros
7.
Langmuir ; 37(39): 11465-11473, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34544234

RESUMO

This paper describes the fabrication of microfluidic devices with a focus on controlling the orientation of photosystem I (PSI) complexes, which directly affects the performance of biophotovoltaic devices by maximizing the efficiency of the extraction of electron/hole pairs from the complexes. The surface chemistry of the electrode on which the complexes assemble plays a critical role in their orientation. We compared the degree of orientation on self-assembled monolayers of phenyl-C61-butyric acid and a custom peptide on nanostructured gold electrodes. Biophotovoltaic devices fabricated with the C61 fulleroid exhibit significantly improved performance and reproducibility compared to those utilizing the peptide, yielding a 1.6-fold increase in efficiency. In addition, the C61-based devices were more stable under continuous illumination. Our findings show that fulleroids, which are well-known acceptor materials in organic photovoltaic devices, facilitate the extraction of electrons from PSI complexes without sacrificing control over the orientation of the complexes, highlighting this combination of traditional organic semiconductors with biomolecules as a viable approach to coopting natural photosynthetic systems for use in solar cells.


Assuntos
Fulerenos , Complexo de Proteína do Fotossistema I , Eletrodos , Elétrons , Complexo de Proteína do Fotossistema I/metabolismo , Reprodutibilidade dos Testes
8.
Artigo em Inglês | MEDLINE | ID: mdl-34132516

RESUMO

Molecular doping makes possible tunable electronic properties of organic semiconductors, yet a lack of control of the doping process narrows its scope for advancing organic electronics. Here, we demonstrate that the molecular doping process can be improved by introducing a neutral radical molecule, namely nitroxyl radical (2,2,6,6-teramethylpiperidin-i-yl) oxyl (TEMPO). Fullerene derivatives are used as the host and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazoles (DMBI-H) as the n-type dopant. TEMPO can abstract a hydrogen atom from DMBI-H and transform the latter into a much stronger reducing agent DMBI•, which efficiently dopes the fullerene derivative to yield an electrical conductivity of 4.4 S cm-1. However, without TEMPO, the fullerene derivative is only weakly doped likely by a hydride transfer following by an inefficient electron transfer. This work unambiguously identifies the doping pathway in fullerene derivative/DMBI-H systems in the presence of TEMPO as the transfer of a hydrogen atom accompanied by electron transfer. In the absence of TEMPO, the doping process inevitably leads to the formation of less symmetrical hydrogenated fullerene derivative anions or radicals, which adversely affect the molecular packing. By adding TEMPO we can exclude the formation of such species and, thus, improve charge transport. In addition, a lower temperature is sufficient to meet an efficient doping process in the presence of TEMPO. Thereby, we provide an extra control of the doping process, enabling enhanced thermoelectric performance at a low processing temperature.

9.
Macromolecules ; 54(8): 3886-3896, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34054145

RESUMO

We demonstrate the impact of the type and position of pendant groups on the n-doping of low-band gap donor-acceptor (D-A) copolymers. Polar glycol ether groups simultaneously increase the electron affinities of D-A copolymers and improve the host/dopant miscibility compared to nonpolar alkyl groups, improving the doping efficiency by a factor of over 40. The bulk mobility of the doped films increases with the fraction of polar groups, leading to a best conductivity of 0.08 S cm-1 and power factor (PF) of 0.24 µW m-1 K-2 in the doped copolymer with the polar pendant groups on both the D and A moieties. We used spatially resolved absorption spectroscopy to relate commensurate morphological changes to the dispersion of dopants and to the relative local doping efficiency, demonstrating a direct relationship between the morphology of the polymer phase, the solvation of the molecular dopant, and the electrical properties of doped films. Our work offers fundamental new insights into the influence of the physical properties of pendant chains on the molecular doping process, which should be generalizable to any molecularly doped polymer films.

10.
Adv Mater ; 33(4): e2006109, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33326147

RESUMO

The reconfiguration of molecular tunneling junctions during operation via the self-assembly of bilayers of glycol ethers is described. Well-established functional groups are used to modulate the magnitude and direction of rectification in assembled tunneling junctions by exposing them to solutions containing different glycol ethers. Variable-temperature measurements confirm that rectification occurs by the expected bias-dependent tunneling-hopping mechanism for these functional groups and that glycol ethers, besides being an unusually efficient tunneling medium, behave similarly to alkanes. Memory bits are fabricated from crossbar junctions prepared by injecting eutectic Ga-In (EGaIn) into microfluidic channels. The states of two 8-bit registers were set by trains of droplets such that they are able to perform logical AND operations on bit strings encoded into chemical packets that alter the composition of the crossbar junctions through self-assembly to effect memristor-like properties. This proof-of-concept work demonstrates the potential for fieldable devices based on molecular tunneling junctions comprising self-assembled monolayers and bilayers.

11.
Adv Mater ; 33(4): e2006694, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33306230

RESUMO

There is no molecular strategy for selectively increasing the Seebeck coefficient without reducing the electrical conductivity for organic thermoelectrics. Here, it is reported that the use of amphipathic side chains in an n-type donor-acceptor copolymer can selectively increase the Seebeck coefficient and thus increase the power factor by a factor of ≈5. The amphipathic side chain contains an alkyl chain segment as a spacer between the polymer backbone and an ethylene glycol type chain segment. The use of this alkyl spacer does not only reduce the energetic disorder in the conjugated polymer film but can also properly control the dopant sites away from the backbone, which minimizes the adverse influence of counterions. As confirmed by kinetic Monte Carlo simulations with the host-dopant distance as the only variable, a reduced Coulombic interaction resulting from a larger host-dopant distance contributes to a higher Seebeck coefficient for a given electrical conductivity. Finally, an optimized power factor of 18 µW m-1 K-2 is achieved in the doped polymer film. This work provides a facile molecular strategy for selectively improving the Seebeck coefficient and opens up a new route for optimizing the dopant location toward realizing better n-type polymeric thermoelectrics.

12.
Nat Commun ; 11(1): 5694, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173050

RESUMO

The 'phonon-glass electron-crystal' concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly 'phonon glasses'. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being 'electron crystals'. Here, we report a molecularly n-doped fullerene derivative with meticulous design of the side chain that approaches an organic 'PGEC' thermoelectric material. This thermoelectric material exhibits an excellent electrical conductivity of >10 S cm-1 and an ultralow thermal conductivity of <0.1 Wm-1K-1, leading to the best figure of merit ZT = 0.34 (at 120 °C) among all reported single-host n-type organic thermoelectric materials. The key factor to achieving the record performance is to use 'arm-shaped' double-triethylene-glycol-type side chains, which not only offer excellent doping efficiency (~60%) but also induce a disorder-to-order transition upon thermal annealing. This study illustrates the vast potential of organic semiconductors as thermoelectric materials.

13.
J Phys Chem C Nanomater Interfaces ; 124(41): 22776-22783, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33093933

RESUMO

This paper describes the conductance of single-molecules and self-assembled monolayers comprising an oligophenyleneethynylene core, functionalized with acenes of increasing length that extend conjugation perpendicular to the path of tunneling electrons. In the Mechanically Controlled Break Junction (MCBJ) experiment, multiple conductance plateaus were identified. The high conductance plateau, which we attribute to the single molecule conformation, shows an increase of conductance as a function of acene length, in good agreement with theoretical predictions. The lower plateau is attributed to multiple molecules bridging the junctions with intermolecular interactions playing a role. In junctions comprising a self-assembled monolayer with eutectic Ga-In top-contacts (EGaIn), the pentacene derivative exhibits unusually low conductance, which we ascribe to the inability of these molecules to pack in a monolayer without introducing significant intermolecular contacts. This hypothesis is supported by the MCBJ data and theoretical calculations showing suppressed conductance through the PC films. These results highlight the role of intermolecular effects and junction geometries in the observed fluctuations of conductance values between single-molecule and ensemble junctions, and the importance of studying molecules in both platforms.

14.
J Am Chem Soc ; 142(35): 15075-15083, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786759

RESUMO

Despite their ubiquity, self-assembled monolayers (SAMs) of thiols on coinage metals are difficult to study and are still not completely understood, particularly with respect to the nature of thiol-metal bonding. Recent advances in molecular electronics have highlighted this deficiency due to the sensitivity of tunneling charge-transport to the subtle differences in the overall composition of SAMs and the chemistry of their attachment to surfaces. These advances have also challenged assumptions about the spontaneous formation of covalent thiol-metal bonds. This paper describes a series of experiments that correlate changes in the physical properties of SAMs to photoelectron spectroscopy to unambiguously assign binding energies of noncovalent interactions to physisorbed disulfides. These disulfides can be converted to covalent metal-thiolate bonds by exposure to free thiols, leading to the remarkable observation of the total loss and recovery of length-dependent tunneling charge-transport. The identification and assignment of physisorbed disulfides solve a long-standing mystery and reveal new, dynamic properties in SAMs of thiols.

15.
iScience ; 23(5): 101099, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32438319

RESUMO

Successful integration of proteins in solid-state electronics requires contacting them in a non-invasive fashion, with a solid conducting surface for immobilization as one such contact. The contacts can affect and even dominate the measured electronic transport. Often substrates, substrate treatments, protein immobilization, and device geometries differ between laboratories. Thus the question arises how far results from different laboratories and platforms are comparable and how to distinguish genuine protein electronic transport properties from platform-induced ones. We report a systematic comparison of electronic transport measurements between different laboratories, using all commonly used large-area schemes to contact a set of three proteins of largely different types. Altogether we study eight different combinations of molecular junction configurations, designed so that Ageoof junctions varies from 105 to 10-3 µm2. Although for the same protein, measured with similar device geometry, results compare reasonably well, there are significant differences in current densities (an intensive variable) between different device geometries. Likely, these originate in the critical contact-protein coupling (∼contact resistance), in addition to the actual number of proteins involved, because the effective junction contact area depends on the nanometric roughness of the electrodes and at times, even the proteins may increase this roughness. On the positive side, our results show that understanding what controls the coupling can make the coupling a design knob. In terms of extensive variables, such as temperature, our comparison unanimously shows the transport to be independent of temperature for all studied configurations and proteins. Our study places coupling and lack of temperature activation as key aspects to be considered in both modeling and practice of protein electronic transport experiments.

16.
Angew Chem Int Ed Engl ; 59(34): 14308-14312, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32469444

RESUMO

This study describes the modulation of tunneling probabilities in molecular junctions by switching one of two parallel intramolecular pathways. A linearly conjugated molecular wire provides a rigid framework that allows a second, cross-conjugated pathway to be effectively switched on and off by protonation, affecting the total conductance of the junction. This approach works because a traversing electron interacts with the entire quantum-mechanical circuit simultaneously; Kirchhoff's rules do not apply. We confirm this concept by comparing the conductances of a series of compounds with single or parallel pathways in large-area junctions using EGaIn contacts and single-molecule break junctions using gold contacts. We affect switching selectively in one of two parallel pathways by converting a cross-conjugated carbonyl carbon into a trivalent carbocation, which replaces destructive quantum interference with a symmetrical resonance, causing an increase in transmission in the bias window.

17.
ACS Omega ; 5(9): 4689-4696, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32175516

RESUMO

This paper describes the synthesis and characterization of three new aromatic polyketones with repeating units based on 2,2'-(2,5-dihexyl-1,4-phenylene) dithiophene (PTK), 2,2'-(9,9-dihexyl-9H-fluorene-2,7-diyl)dithiophene (PFTK), and 4,7-bis(3-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (PBTK). These polymers were obtained with a one-pot Suzuki-Miyaura cross-coupling-promoted homopolymerization to afford high-quality, defect-free polymers. Experimental and theoretical studies were applied to investigate their optical and electrical properties. The cross-conjugated nature of aromatic polyketones imparts excellent thermal stability. Exposure to acid converts the cross-conjugation to linear-conjugation, enabling the dynamic tuning of optoelectronic properties.

18.
Nat Mater ; 19(3): 330-337, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31959952

RESUMO

Self-assembled monolayers (SAMs) are widely used to engineer the surface properties of metals. The relatively simple and versatile chemistry of metal-thiolate bonds makes thiolate SAMs the preferred option in a range of applications, yet fragility and a tendency to oxidize in air limit their long-term use. Here, we report the formation of thiol-free self-assembled mono- and bilayers of glycol ethers, which bind to the surface of coinage metals through the spontaneous chemisorption of glycol ether-functionalized fullerenes. As-prepared assemblies are bilayers presenting fullerene cages at both the substrate and ambient interface. Subsequent exposure to functionalized glycol ethers displaces the topmost layer of glycol ether-functionalized fullerenes, and the resulting assemblies expose functional groups to the ambient interface. These layers exhibit the key properties of thiolate SAMs, yet they are stable to ambient conditions for several weeks, as shown by the performance of tunnelling junctions formed from SAMs of alkyl-functionalized glycol ethers. Glycol ether-functionalized spiropyrans incorporated into mixed monolayers lead to reversible, light-driven conductance switching. Self-assemblies of glycol ethers are drop-in replacements for thiolate SAMs that retain all of their useful properties while avoiding the drawbacks of metal-thiolate bonds.

19.
J Phys Chem C Nanomater Interfaces ; 123(42): 25908-25914, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31673304

RESUMO

This paper describes an experimental approach to eliminating the loss of reversibility that surface-bound spiropyrans exhibit when switched with light. Although such fatigue can be controlled in other contexts, on surfaces, the photochromic compounds are held in close proximity to each other and relatively few molecules modulate the properties of a device, leading to a loss of functionality after only a few switching cycles. The switching process was characterized by photoelectron spectroscopy and differences in tunneling currents in the spiropyran and merocyanine forms using eutectic Ga-In. Self-assembled monolayers comprising only the photochromic compounds degraded rapidly, while mixed monolayers with hexanethiol showed different behaviors depending on the relative humidity. Under dry conditions, no chemical degradation was observed and the switching process was reversible over at least 100 cycles. Under humid conditions, no degradation occurred, but the switching process became irreversible. The absence of degradation observed in mixed monolayers is ascribed to the lack of solvation, which increases the barrier to a key bond rotation past the available thermal energy. These results highlight important differences in the contexts in which photochromic compounds are utilized and demonstrate that they can be leveraged to extract device-relevant functionality from surface-bound switches by suppressing fatigue and irreversibility.

20.
Front Chem ; 7: 681, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31750287

RESUMO

Two polynuclear cobalt(II,III) complexes, [Co5(N3)4(N-n-bda)4(bza·SMe)2] (1) and [Co6(N3)4(N-n-bda)2(bza·SMe)5(MeOH)4]Cl (2), where Hbza·SMe = 4-(methylthio)benzoic acid and N-n-H2bda = N-n-butyldiethanolamine, were synthesized and fully characterized by various techniques. Compound 1 exhibits an unusual, approximately C 2-symmetric {CoII Co 4 III } core of two isosceles Co3 triangles with perpendicularly oriented planes, sharing a central, high-spin CoII ion residing in a distorted tetrahedral coordination environment. This central CoII ion is connected to four outer, octahedrally coordinated low-spin CoIII ions via oxo bridges. Compound 2 comprises a semi-circular { Co 4 II Co 2 III } motif of four non-interacting high-spin CoII and two low-spin CoIII centers in octahedral coordination environments. Self-assembled monolayers (SAMs) of 1 and 2 were physisorbed on template-stripped gold surfaces contacted by an eutectic gallium-indium (EGaIn) tip. The acquired current density-voltage (I-V) data revealed that the cobalt-based SAMs are more electrically robust than those of the previously reported dinuclear {CuIILnIII} complexes with Ln = Gd, Tb, Dy, or Y (Schmitz et al., 2018a). In addition, between 170 and 220°C, the neutral, mixed-valence compound 1 undergoes a redox modification, yielding a {Co5}-based coordination cluster (1-A) with five non-interacting, high-spin octahedral CoII centers as indicated by SQUID magnetometry analysis in combination with X-ray photoelectron spectroscopy and infrared spectroscopy. Solvothermal treatment of 1 results in a high-nuclearity coordination cluster, [Co10(N3)2(N-n-bda)6(bza·SMe)6] (3), containing 10 virtually non-interacting high-spin CoII centers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...