Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
5.
PLoS One ; 18(2): e0277652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795670

RESUMO

Chronic kidney disease (CKD) progression may be evoked through dysregulated mitochondrial dynamics enhanced oxidative stress and inflammation contributing to high cardiovascular morbidity and mortality. Previous study has demonstrated sodium thiosulfate (STS, Na2S2O3) could effectively attenuate renal oxidative injury in the animal model of renovascular hypertension. We explored whether the potentially therapeutic effect of STS is available on the attenuating CKD injury in thirty-six male Wistar rats with 5/6 nephrectomy. We determined the STS effect on reactive oxygen species (ROS) amount in vitro and in vivo by an ultrasensitive chemiluminescence-amplification method, ED-1 mediated inflammation, Masson's trichrome stained fibrosis, mitochondrial dynamics (fission and fusion) and two types of programmed cell death, apoptosis and ferroptosis by western blot and immunohistochemistry. Our in vitro data showed STS displayed the strongest scavenging ROS activity at the dosage of 0.1 g. We applied STS at 0.1 g/kg intraperitoneally 5 times/week for 4 weeks to these CKD rats. CKD significantly enhanced the degree in arterial blood pressure, urinary protein, BUN, creatinine, blood and kidney ROS amount, leukocytes infiltration, renal 4-HNE expression, fibrosis, dynamin-related protein 1 (Drp1) mediated mitochondrial fission, Bax/c-caspase 9/c-caspase 3/poly (ADP-ribose) polymerase (PARP) mediated apoptosis, iron overload/ferroptosis and the decreased xCT/GPX4 expression and OPA-1 mediated mitochondrial fusion. STS treatment significantly ameliorated oxidative stress, leukocyte infiltration, fibrosis, apoptosis and ferroptosis and improved mitochondrial dynamics and renal dysfunction in CKD rats. Our results suggest that STS as drug repurposing strategy could attenuate CKD injury through the action of anti-mitochondrial fission, anti-inflammation, anti-fibrosis, anti-apoptotic, and anti-ferroptotic mechanisms.


Assuntos
Ferroptose , Insuficiência Renal Crônica , Ratos , Masculino , Animais , Espécies Reativas de Oxigênio/metabolismo , Dinâmica Mitocondrial , Ratos Wistar , Rim/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Apoptose
6.
PLoS One ; 17(10): e0275748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36288391

RESUMO

Negative air ions (NAIs) being bioactive and negative charged molecules may confer antioxidant and anti-inflammatory activity. We assessed the effect of NAIs on two inflammatory diseases in animal models including lipopolysaccharide (LPS) induced acute lung injury (ALI) and wound healing in diabetic rats. We used intra-tracheal infusion of LPS to induce ALI and made a full-thickness cutaneous wound in streptozotocin-induced diabetic female Wistar rats. We evaluated NAIs effects on reactive oxygen species amount, leukocyte infiltration, wound healing rate, western blot, and immunohistochemistry in the lungs of ALI and skin sections of wounds. Our data found NAIs exposed saline displayed higher antioxidant activity vs. non-exposed saline. NAIs exposure did not significantly affect arterial blood pressure and respiratory frequency in control and LPS treated groups. LPS increased leukocyte infiltration, caspase 3/Poly-ADP-ribose-polymerase-mediated apoptosis formation and decreased Beclin-1/LC3-II-mediated autophagy in lungs. NAIs exposure conferred pulmonary protection by depressed leukocyte infiltration and caspase 3/Poly-ADP-ribose-polymerase mediated apoptosis and enhanced LC3-II-mediated autophagy in LPS induced ALI. NAIs treatment resulted in a significantly accelerated wound closure rate, decreased erythrocyte accumulation and leukocyte infiltration mediated oxidative stress and inflammation, and upregulated expression of skin collagen, vascular endothelial growth factor receptor-2 (VEGFR-2) and factor transforming growth factor-beta 1 (TGF-ß1) vs non-treated group. Based on these results, it is suggested that NAIs conferred a protection through the upregulating LC3-II-dependent autophagy mechanism and downregulating leukocyte infiltration mediated inflammation and caspase 3/Poly-ADP-ribose-polymerase signaling in the LPS-treated ALI and promoted diabetic wound healing through the enhancing skin collagen synthesis, VEGFR-2 and TGF-ß1 pathways.


Assuntos
Lesão Pulmonar Aguda , Diabetes Mellitus Experimental , Ratos , Feminino , Animais , Lipopolissacarídeos/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antioxidantes/farmacologia , Caspase 3 , Fator de Crescimento Transformador beta1/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Proteína Beclina-1 , Estreptozocina/farmacologia , Diabetes Mellitus Experimental/complicações , Fator A de Crescimento do Endotélio Vascular/farmacologia , Ratos Wistar , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Cicatrização , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Íons , Fatores de Crescimento Transformadores , Adenosina Difosfato Ribose/farmacologia
7.
Antioxidants (Basel) ; 11(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139786

RESUMO

Intravenous adipose mesenchymal stem cells (ADSCs) attenuate renal ischemia/reperfusion (IR) injury but with major drawbacks, including the lack of a specific homing effect after systemic infusion, cell trapping in the lung, and early cell death in the damaged microenvironment. We examined whether intrarenal arterial transplantation of dexmedetomidine (DEX) preconditioning ADSC-derived microvesicles (DEX-MVs) could promote further therapeutic potential to reduce renal IR injury. We evaluated the effect of DEX-MVs on NRK-52E cells migration, hypoxia/reoxygenation (H/R)-induced cell death, and reactive oxygen species (ROS) amount and renal IR model in rats. IR was established by bilateral 45 min ischemia followed by 4 h reperfusion. Intrarenal MVs or DEX-MVs were administered prior to ischemia. Renal oxidative stress, hemodynamics and function, western blot, immunohistochemistry, and tubular injury scores were determined. The miR-122-5p expression in kidneys was analyzed using microarrays and quantitative RT-PCR and its action target was predicted by TargetScan. DEX-MVs were more efficient than MVs to increase migration capability and to further decrease H/R-induced cell death and ROS level in NRK-52E cells. Consistently, DEX-MVs were better than MV in increasing CD44 expression, improving IR-depressed renal hemodynamics and renal erythropoietin expression, inhibiting IR-enhanced renal ROS level, tubular injury score, miR-122-5p expression, pNF-κB expression, Bax/caspase 3/poly(ADP-ribose) polymerase (PARP)-mediated apoptosis, blood urea nitrogen, and creatinine levels. The use of NRK-52E cells confirmed that miR-122-5p mimic via inhibiting erythropoietin expression exacerbated Bax-mediated apoptosis, whereas miR-122-5p inhibitor via upregulating erythropoietin and Bcl-2 expression reduced apoptosis. In summary, intrarenal arterial DEX-MV conferred further therapeutic potential to reduce renal IR injury through the miR-122-5p/erythropoietin/apoptosis axis.

8.
Life Sci ; 308: 120969, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116531

RESUMO

AIMS: Liver diseases induce a severe decrease in quality of life. Stem cell based therapy shows therapeutic potential in the treatment of liver injury. Theanine is a unique amino acid found in green tea and could confer beneficial effects on cell protection. This study investigates if protective effect on the liver by stem cells preincubated with theanine is better than that from stem cells without preincubated theanine. METHODS: We transplanted theanine preincubated adipose-derived stem cells (ADSC) to male Wistar rats with liver dysfunction induced by N-nitrosodiethylamine. The viability, migration and antioxidant capabilities were performed in the ADSC pre-incubated with theanine. Hepatic functional, structural and molecular assays were determined in the animals with or without theanine preincubated ADSC. KEY FINDINGS: Cell model revealed that ADSC preincubated with green tea theanine (T-ADSC) increased cell capabilities including viability, migration and paracrine secretion. In vivo results indicated that several pathological conditions were observed in rats with liver injury induced by DEN including structural changes and expression of pyroptosis as well as autophagy markers. The above pathological conditions were improved when the rats received both ADSC and T-ADSC treatment. Furthermore, T-ADSC showed better therapeutic effect on rats with liver injury than ADSC due to significant suppression of pyroptosis markers caspase-1 and IL-1ß as well as autophagy marker LC3-II accompanied with intensive paracrine VEGF from T-ADSC. SIGNIFICANCE: Increased paracrine VEGF secretion from T-ADSC plays a crucial role in liver regeneration. A future clinical study may be designed for further verification of these experimental in vivo findings.


Assuntos
Dietilnitrosamina , Hepatopatias , Tecido Adiposo/metabolismo , Animais , Antioxidantes/farmacologia , Autofagia , Biomarcadores/metabolismo , Caspases/metabolismo , Dietilnitrosamina/toxicidade , Glutamatos/farmacologia , Hepatopatias/metabolismo , Regeneração Hepática , Masculino , Piroptose , Qualidade de Vida , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo , Chá , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Tissue Eng Regen Med ; 19(6): 1207-1221, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029414

RESUMO

BACKGROUND: Liver inflammation is the main cause of severe liver diseases, including liver fibrosis, steatohepatitis, cirrhosis and hepatocellular carcinoma. Cell therapy topics are receiving increasingly more attention. The therapeutic applications of mesenchymal stem cells (MSC) have become one of the most discussed issues. While other stem cells have therapeutic effects, they have only one or two clinical applications. MSCs are responsible for repairing a variety of tissue injuries. Moreover, MSCs could be derived from several sources, including adipose tissue. MSCs are usually more abundant and easier to obtain compared to other stem cells. METHODS: To prove the concept that MSCs have homing ability to the injured tissue and assist in tissue repair, we examined the effects of intravenous injected adipose-derived mesenchymal stem cells (ADSCs) in a N-nitrosodiethylamine (DEN)-induced liver injury rat model. RESULTS: The significant repairing ability of ADSCs was observed. The levels of fibrosis, apoptosis, and tumorigenesis in the DEN-injured liver tissues all decreased after ADSC treatment. Furthermore, to enhance the therapeutic effects of ADSCs, we pretreated them with L-theanine, which promotes the hepatocyte growth factor secretion of ADSC, and therefore improved the healing effects on injured liver tissue. CONCLUSION: ADSCs, especially L-theanine-pretreated ADSCs, have anti-inflammation, anti-apoptosis, and anti-tumorigenesis effects on the N-nitrosodiethylamine-induced liver injury rat model.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Dietilnitrosamina/toxicidade , Dietilnitrosamina/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Células-Tronco Mesenquimais/metabolismo
10.
Dis Markers ; 2022: 3549047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923243

RESUMO

A spot urine creatinine-to-osmolality ratio (sUCr/Osm) is proposed as a surrogate of the urinary excretion rate of creatinine (Cr) and convenient for forecasting serum Cr (SCr) trends. The lower the sUCr/Osm, the lower the excreted Cr amount accompanied by per unit of osmoles, the higher the risk of Cr accumulation. For exploring the reference intervals of sUCr/Osm in general adults, a cross-sectional analysis was performed on a subset of data from the National Health and Nutrition Examination Survey (NHANES) 2011-2012. Of the eligible 3,316 adults aged 18.0 to 79.9 years, the age (mean ± SD) was 45.2 ± 17.2 years old, women was 45.02%, body weight (BW) was 76.1 ± 14.5 kg, and African Americans was 23.6%. Blood urea nitrogen (BUN) was 12.6 ± 4.7 mg/dL; SCr was 0.89 ± 0.34 mg/dL. As spot urine Cr and osmolality were 127.1 ± 84.0 mg/dl and 649 ± 266 mOsm/kg, respectively, sUCr/Osm was 0.19 ± 0.08. With adjustment of factors related to personal urinary excretion of Cr and osmoles by multivariable regression analysis, the estimated sUCr/Osm (esUCr/Osm) for an individual was 0.153 × (age in year)-0.070 × (BW in kg)0.283 × 1.244 [if African American] × (BUN in mg/dL)-0.310 × (SCr in mg/dL)0.681. The index of sUCr/Osm to personalized esUCr/Osm was 1.05 ± 0.39. When only low urinary excretion of Cr is likely to be of clinical concern, further analysis showed 157 individuals (4.7%, outside the 5th percentile) had their original sUCr/Osm < 0.08; 157 had the sUCr/Osm indexed for personalized esUCr/Osm < 0.50.


Assuntos
Creatinina , Adulto , Nitrogênio da Ureia Sanguínea , Peso Corporal , Estudos Transversais , Feminino , Humanos , Pessoa de Meia-Idade , Inquéritos Nutricionais , Concentração Osmolar
11.
J Pers Med ; 12(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35330390

RESUMO

Exendin-4 (Ex-4) is an incretin mimetic agent approved for diabetes treatment and neuronal protection. However, the required frequent injections restrict its clinical application. We prepared Ex-4-loaded poly(d,l-lactide-co-glycolide) nanoparticles (PEx-4) and investigated their effect on cerebral ischemia/reperfusion (IR) injury associated with micturition center damage-induced cystopathy in diabetic rats. Using ten minutes of bilateral carotid artery occlusion combined with hemorrhage-induced hypotension of the IR model in streptozotocin-induced type 1 diabetic (T1DM) Wistar rats, we compared the effects of Ex-4 and PEx-4 on prefrontal cortex edema, voiding function and oxidative stress including cerebral spinal fluid (CSF) reference H2O2 (RH2O2) and HOCl (RHOCl) levels, endoplasmic reticulum (ER) stress, apoptosis, autophagy and pyroptosis signaling in brain and bladder by Western blot and immunohistochemistry. Single injection of PEx-4 displayed higher CSF antioxidant activity and a long-lasting hypoglycemic effect compared to Ex-4 in rats. T1DM and IR primarily enhanced CSF RH2O2, and pIRE-1/caspase-12/pJNK/CHOP-mediated ER stress, caspase-3/PARP-mediated apoptosis, Beclin-1/LC3B-mediated autophagy and caspase-1/IL-1ß-mediated pyroptosis signaling in the damaged brains. Our data further evidenced that PEx-4 were more efficient than Ex-4 in attenuating IR-evoked prefrontal cortex edema, the impairment in micturition center and the enhanced level of CSF RH2O2 and HOCl, ER stress, apoptosis, autophagy and pyroptosis parameters in the damaged brains, but had less of an effect on IR-induced voiding dysfunction in bladders of T1DM rats. In summary, PEx-4 with stronger antioxidant activity and long-lasting bioavailability may efficiently confer therapeutic efficacy to ameliorate IR-evoked brain damage through the inhibitory action on oxidative stress, ER stress, apoptosis, autophagy and pyroptosis signaling in diabetic rats.

12.
Life (Basel) ; 12(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054478

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease caused by oxidative stress, inflammation and lipid deposition within liver cells, and is subsequently contributing to cardiovascular diseases such as atherosclerosis. Deep sea water (DSW) is characterized by its clearance and abundant nutrients with antioxidant and anti-inflammatory activity to confer therapeutic potential. We aimed to explore the therapeutic capability of our prepared multi-filtration DSW-dissolved organic matter (DSW-DOM) on high-fat diet-induced hyperlipidemia and endothelial dysfunction in hamsters. A high-fat/high-cholesterol diet led to increased oxidative stress, including blood reactive oxygen species (ROS), plasma malondialdehyde (MDA) and hepatic CYP2E1 expression; an increased hyperlipidemic profile and SREBP 1-mediated fatty liver; promoted NFκB p65-mediated hepatic inflammation; triggered PARP-mediated hepatic apoptosis; and enhanced endothelial intercellular adhesion molecule-1 (ICAM-1) and von Willebrand factor (VWF)-mediated atherosclerosis associated with the depressed hepatic antioxidant Paraoxonase 1 (PON1) expression. The DSW-DOM-enriched 1295 fraction, with strong H2O2 scavenging activity, efficiently reduced several oxidative stress parameters, the lipid profile, inflammation, and apoptosis, possibly through the PON1-mediated antioxidant capability. Furthermore, DSW-DOM treatment significantly decreased the endothelial ICAM-1 and VWF expression, subsequently leading to the elongation of time to occlusion of FeCl3-induced arterial thrombosis and to the inhibition of FeCl3-induced fluorescent platelet adhesion to mesentery arterioles in the high-fat diet. Based on the above results, our data suggest that DSW-DOM intake via antioxidant defense mechanisms confers protective effects against high-fat diet-enhanced, oxidative stress-mediated hyperlipidemia, and endothelial dysfunction evoked atherosclerosis by downregulating oxidative injury, lipogenesis, inflammation and apoptosis.

13.
J Chin Med Assoc ; 85(3): 346-357, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019864

RESUMO

BACKGROUND: Diabetes or hypertension contributes to erectile dysfunction (ED). We hypothesized that excess reactive oxygen species (ROS) production evoked by diabetes combined with hypertension may further suppress endothelial nitric oxide (NO) expression/activity and promote oxidative stress in the ED penis. METHODS: Twenty-four adult male Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were divided into four groups: normal WKY, diabetic WKY, normal SHR and diabetic SHR. Intraperitoneal streptozotocin (65 mg/kg) was applied to induce type I diabetes. After 4-week diabetes and/or hypertension induction, we determined the intra-cavernous pressure (ICP) using electrical stimulation of cavernous nerves, intra-cavernosum NO amount using an electrochemical NO probe, and blood ROS using an ultrasensitive chemiluminescence-amplified analyzer. Western blot analysis and immunohistochemistry were used to explore the pathophysiologic mechanisms of inflammation, apoptosis and autophagy in the penis. A novel NO donor, CysaCysd Lu-5 (CCL5, (RCH2CH2S)(R'R"CHCH2S)Fe(NO)2, 1-4 µg), was intravenously administered to these ED rats for evaluating their ICP responses. RESULTS: In the baseline status, the lucigenin- and luminol-amplified blood ROS were significantly enhanced in the diabetic SHR rats vs normal WKY rats. Significantly decreased ICP, eNOS expression and NO amount were found in the normal SHR, diabetic WKY, and diabetic SHR vs normal WKY rats. Intravenous NO donor L-Arginine markedly increased ICP and NO amount, whereas eNOS inhibitor, Nω-Nitro-L-Arginine methyl ester hydrochloride depressed ICP in all four groups. Diabetes and/or hypertension alone increased fibrosis, proinflammatory NF-kB/ICAM-1 expression, mast cell numbers, CD68 expression and infiltration, Caspase 3-mediated apoptosis, Beclin-1/LC3-II-mediated autophagy and mild Nrf-2/HO-1 expression and depressed eNOS expression in the ED penis. The novel NO donor, CCL5, was more efficient than L-arginine to improve diabetes and/or hypertension-induced ED by the significant increase of ICP. CONCLUSION: Diabetes combined with hypertension synergistically exacerbated ED through enhanced oxidative stress, inflammation, apoptosis and autophagy and depressed eNOS activity and NO production.


Assuntos
Diabetes Mellitus , Disfunção Erétil , Hipertensão , Animais , Apoptose , Arginina/metabolismo , Autofagia , Disfunção Erétil/complicações , Humanos , Hipertensão/complicações , Inflamação , Masculino , Óxido Nítrico , Estresse Oxidativo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo
14.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34681183

RESUMO

The urothelium displays mechano- and chemosensory functions via numerous receptors and channels. The calcium-sensing receptor (CaSR) detects extracellular calcium and modulates several physiological functions. Nonetheless, information about the expression and the role of CaSR in lower urinary tract has been absent. We aimed to determine the existence of urothelial CaSR in urinary bladder and its effect on micturition function. We utilized Western blot to confirm the expression of CaSR in bladder and used immunofluorescence to verify the location of the CaSR in the bladder urothelium via colocalization with uroplakin III A. The activation of urothelial CaSR via the CaSR agonist, AC-265347 (AC), decreased urinary bladder smooth muscle (detrusor) activity, whereas its inhibition via the CaSR antagonist, NPS-2143 hydrochloride (NPS), increased detrusor activity in in vitro myography experiments. Cystometry, bladder nerve activities recording, and bladder surface microcirculation detection were conducted to evaluate the effects of the urothelial CaSR via intravesical administrations. Intravesical AC inhibited micturition reflex, bladder afferent and efferent nerve activities, and reversed cystitis-induced bladder hyperactivity. The urothelial CaSR demonstrated a chemosensory function, and modulated micturition reflex via regulating detrusor activity. This study provided further evidence of how the urothelial CaSR mediated micturition and implicated the urothelial CaSR as a potential pharmacotherapeutic target in the intervention of bladder disorders.

15.
Life (Basel) ; 11(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34440546

RESUMO

Nutritional strategies to reduce hyperlipidemia and the risk of cardiovascular disease are gaining more public favor and medical professionals' attention. The authors of this study explored the effect of sweet potato leaf powder (SPLP) feeding on the parameters of plasma lipids, reactive oxygen species, and time to thrombosis formation in Syrian hamsters fed with high-cholesterol diets. The animals were separated into six groups: a feeding control diet, a control diet containing 0.1% cholesterol, a control diet containing 0.2% cholesterol, a control diet containing 0.1% cholesterol plus 2.5% SPLP, a control diet containing 0.1% cholesterol plus 5% SPLP, and a control diet containing 0.2% cholesterol plus 5% SPLP for six weeks. The levels of serum total cholesterol (51% increase), low-density lipoprotein cholesterol (70.6% increase), very-low-density lipoprotein cholesterol (51.3% increase), and the triglyceride and atherogenic index (LDL-C/HDL-C) significantly increased in the high-cholesterol diet groups. Concomitant 5% sweet potato leaf powder ingestion significantly decreased the lipid profiles, with a 20.6% total cholesterol reduction in the 0.1% cholesterol diet groups, a 17.2% reduction in the 0.2% group, a 48.7% LDL reduction in the 0.1% cholesterol group, and a 30.3% reduction in the 0.2% group, with a consequent decrease in the atherogenic index. SPLP feeding was found to be associated with increased fecal sterol contents, with a 188.6% increase in the 0.1% cholesterol-fed group and a 177.3% increase in the 0.2% group. The SPLP-fed groups had depressed ROS levels, elongated FeCl3-induced times to thrombosis formation, and increased liver superoxide dismutase contents and SREBP-1 protein expression. Sweet potato leaf intake could reduce plasma total cholesterol, LDL, and oxidative stress. We suggest sweet potato leaf intake as a choice of nutritional strategy for hyperlipidemia and cardiovascular disease prevention.

16.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210091

RESUMO

(1) Background: We established a new bladder ischemia rat model through bilateral partial iliac arterial occlusion (BPAO) and investigated the therapeutic effect of adipose-derived stem cells (ADSCs) and ADSC-derived microvesicles (MVs); (2) Methods: The study included four groups: (1) sham, (2) BPAO, (3) BPAO + ADSCs, and (4) BPAO + ADSC-derived MVs. Female Wistar rats with BPAO were injected with ADSCs or ADSC-derived MVs through the femoral artery. Doppler flowmetry and real-time laser speckle contrast imaging were performed to quantify blood flow in the common iliac arteries and bladder microcirculation. A 24-h behavior study and transcystometrogram were conducted after 2 weeks. Bladder histology, immunostaining, and lipid peroxidation assay were performed. The expressions of P2X2, P2X3, M2, and M3 receptors and nerve growth factor (NGF) were evaluated; (3) Results: BPAO significantly reduced bladder microcirculation, intercontraction interval (ICI), and bladder volume and increased the amplitude of nonvoiding contraction, neutrophil infiltration, and malondialdehyde and NGF levels. ADSCs and ADSC-derived MVs significantly ameliorated these effects. The results of Western blot showed that the BPAO group exhibited the highest expression of M3 and P2X2 receptors. ADSCs significantly attenuated the expressions of M2 and P2X2 receptors. ADSC-derived MVs significantly attenuated the expressions of M3 and P2X2 receptors; (4) Conclusions: ADSCs and ADSC-derived MVs ameliorated the adverse effects of BPAO including bladder overactivity, bladder ischemia, and oxidative stress. Inflammation, muscarinic signaling, purinergic signaling, and NGF might be involved in the therapeutic mechanism.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Adultas/transplante , Micropartículas Derivadas de Células/transplante , Bexiga Urinária Hiperativa/terapia , Células-Tronco Adultas/citologia , Animais , Arteriopatias Oclusivas/complicações , Arteriopatias Oclusivas/terapia , Micropartículas Derivadas de Células/fisiologia , Modelos Animais de Doenças , Feminino , Artéria Ilíaca/patologia , Isquemia/etiologia , Isquemia/terapia , Ratos , Ratos Wistar , Bexiga Urinária/patologia , Bexiga Urinária Hiperativa/etiologia
17.
Antioxidants (Basel) ; 10(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200327

RESUMO

Effective antiviral therapeutics are urgently required to fight severe acute respiratory syndrome (SARS) caused by a SARS coronavirus (SARS-CoV). Because polyphenol catechins could confer antioxidative, anti-inflammatory, antiviral, and antimicrobial activities, we assessed the therapeutic effects of catechins against SARS-CoV replication in Vero E6 cells, the preventive effect of catechins on CD25/CD69/CD94/CD8+ cytotoxic T lymphocytes-mediated adaptive immunity, and the protective effect on lipopolysaccharide-induced acute lung injury (ALI) in mice. We found that catechins containing 32.8% epigallocatechin gallate, 15.2% epicatechin gallate, 13.2 epicatechin, 10.8% epigallocatechin, 10.4% gallocatechin, and 4.4% catechin directly inhibited SARS-CoV replication at sub-micromolecular concentrations. Four-week catechins ingestion increased CD8+ T cell percentage, upregulated CD69+/CD25+/CD94-NKG2A/CD8+ T lymphocytes-mediated adaptive immunity, and increased type I cytokines release responding to ovalbumin/alum. Catechins significantly reduced lipopolysaccharide-induced cytokine storm and oxidative stress and ALI by inhibiting PI3K/AKT/mTOR signaling to upregulate Beclin-1/Atg5-Atg12/LC3-II-mediated autophagy mechanism. Pretreatment of autophagy inhibitor 3-Methyladenine reversed the inhibiting effects of catechins on the cytokines and oxidative stress levels and ALI. In conclusion, our data indicated that catechins directly inhibited SARS-CoV replication, potentiated the CD25/CD69/CD94/CD8+ T lymphocytes-mediated adaptive immunity and attenuated lipopolysaccharide-induced ALI and cytokine storm by PI3K/AKT/mTOR-signaling-mediated autophagy, which may be applied to prevent and/or treat SARS-CoV infection.

18.
Stem Cell Res Ther ; 12(1): 367, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183058

RESUMO

BACKGROUND: Acute kidney injury (AKI) is an emerging global healthcare issue without effective therapy yet. Autophagy recycles damaged organelles and helps maintain tissue homeostasis in acute renal ischemia-reperfusion (I/R) injury. Hypoxic mesenchymal stem cells (HMSCs) represent an innovative cell-based therapy in AKI. Moreover, the conditioned medium of HMSCs (HMSC-CM) rich in beneficial trophic factors may serve as a cell-free alternative therapy. Nonetheless, whether HMSCs or HMSC-CM mitigate renal I/R injury via modulating tubular autophagy remains unclear. METHODS: Renal I/R injury was induced by clamping of the left renal artery with right nephrectomy in male Sprague-Dawley rats. The rats were injected with either PBS, HMSCs, or HMSC-CM immediately after the surgery and sacrificed 48 h later. Renal tubular NRK-52E cells subjected to hypoxia-reoxygenation (H/R) injury were co-cultured with HMSCs or treated with HMSC-CM to assess the regulatory effects of HSMCs on tubular autophagy and apoptosis. The association of tubular autophagy gene expression and renal recovery was also investigated in patients with ischemic AKI. RESULT: HMSCs had a superior anti-oxidative effect in I/R-injured rat kidneys as compared to normoxia-cultured mesenchymal stem cells. HMSCs further attenuated renal macrophage infiltration and inflammation, reduced tubular apoptosis, enhanced tubular proliferation, and improved kidney function decline in rats with renal I/R injury. Moreover, HMSCs suppressed superoxide formation, reduced DNA damage and lipid peroxidation, and increased anti-oxidants expression in renal tubular epithelial cells during I/R injury. Co-culture of HMSCs with H/R-injured NRK-52E cells also lessened tubular cell death. Mechanistically, HMSCs downregulated the expression of pro-inflammatory interleukin-1ß, proapoptotic Bax, and caspase 3. Notably, HMSCs also upregulated the expression of autophagy-related LC3B, Atg5 and Beclin 1 in renal tubular cells both in vivo and in vitro. Addition of 3-methyladenine suppressed the activity of autophagy and abrogated the renoprotective effects of HMSCs. The renoprotective effect of tubular autophagy was further validated in patients with ischemic AKI. AKI patients with higher renal LC3B expression were associated with better renal recovery. CONCLUSION: The present study describes that the enhancing effect of MSCs, and especially of HMCSs, on tissue autophagy can be applied to suppress renal tubular apoptosis and attenuate renal impairment during renal I/R injury in the rat. Our findings provide further mechanistic support to HMSCs therapy and its investigation in clinical trials of ischemic AKI.


Assuntos
Injúria Renal Aguda , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Injúria Renal Aguda/terapia , Animais , Apoptose , Autofagia , Humanos , Hipóxia , Isquemia , Rim , Masculino , Ratos , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/terapia
19.
PLoS One ; 16(3): e0248508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33788857

RESUMO

We explored the effects of silicon-containing water (BT) intake on gastrointestinal function and gut microbiota. BT was obtained by pressuring tap water through silicon minerals (mullite, Al6Si2O13) column. BT decreased H2O2 chemiluminescence counts, indicating its antioxidant activity. Four weeks of BT drinking increased H2O2 scavenging activity and glutathione peroxidase activity of plasma. BT drinking did not affect the body weight but significantly reduced the weight of feces and gastrointestinal motility. BT drinking significantly suppressed pylorus ligation enhanced gastric juice secretion, gastric reactive oxygen species amount, erythrocyte extravasation, IL-1ß production by infiltrating leukocyte, and lipid peroxidation within gastric mucosa. Data from 16S rRNA sequencing revealed BT drinking significantly increased beneficial flora including Ruminococcaceae UCG-005, Prevotellaceae NK3B31, Weissella paramesenteroides, Lactobacillus reuteri, and Lactobacillus murinus and decreased harmful flora including Mucispirillum, Rodentibacter, and Staphylococcus aureus. This study pioneerly provided scientific evidences for the potential effects of water-soluble forms of silicon intake on antioxidant activity, gastrointestinal function, and gut microbiota modulation.


Assuntos
Antioxidantes/administração & dosagem , Ingestão de Líquidos , Fármacos Gastrointestinais/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Dióxido de Silício/administração & dosagem , Água/administração & dosagem , Silicatos de Alumínio/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Peróxido de Hidrogênio/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Água/química
20.
J Chin Med Assoc ; 84(4): 428-437, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33595989

RESUMO

BACKGROUND: Sub-total/total gastrectomy with lymph node dissection (LND) remains an effective therapeutic strategy for resectable gastric adenocarcinomas (GACs). Despite the prognostic significance of positive lymph nodes (PLNs) defined in N-status, few have appraised the impacts of negative lymph nodes (NLNs) and the percentage of NLN (=number of NLNs/number of total lymph nodes [TLNs], %), as well as the extent of TLNs to be dissected in GACs. METHODS: We retrospectively analyzed 62 GAC patients (mean age of 67.1 years; 41 men) undergoing primary sub-total/total gastrectomy from a single institute. Candidate variables, including the number of NLNs (≤9 and >9) and the percentage of NLN (≤37.5, 37.5-80.6 and >80.6, %), were evaluated to determine their prognostic impacts and hazard ratios (HRs). RESULTS: Under the multivariate Cox proportional-hazards regression model, tumor length exceeding 4 cm (p = 0.017; HR = 2.828), perineural invasion (p = 0.037; HR = 3.182), and lower percentage of NLN (p = 0.016 and p = 0.060; HRs = 1.000, 0.327, and 0.333 for subgroups ≤37.5, 37.5-80.6, and >80.6, respectively) were three independent predictors with elevated HRs for poor prognosis. GAC patients with the percentage of NLN > 80.6 were highly related to those with NLNs > 9 (p < 0.001), and GAC patients with NLNs > 9 were highly related to those with TLNs > 15 (p < 0.001). For all 62 GAC or 42 N(+) GAC patients, those who underwent LND with TLNs>15 tended to have more PLNs (p = 0.018, p = 0.003) and more NLNs (p < 0.001, p = 0.029) than did those with TLNs ≤ 15. Among the 42 GAC patients with TLNs > 15, a lower percentage of NLN (p = 0.026 and p = 0.015; HRs = 1.000, 0.272, and 0.180 for subgroups ≤37.5, 37.5-80.6, and >80.6, respectively) remained an independent predictor of poor prognosis. CONCLUSION: The percentage of NLN could predict the prognosis of GAC patients properly. However, an accurate percentage of NLN needs a minimal requirement of TLNs > 15 to detect an adequate number of PLNs and sufficient number of NLNs.


Assuntos
Adenocarcinoma/cirurgia , Linfonodos/patologia , Neoplasias Gástricas/cirurgia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...